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Vorwort

Ein umfangreiches Projekt wie das einer Promotion bedarf nicht nur eines
guten Plans und des Ehrgeizes, diesen zu verfolgen. Vielmehr ist hierzu
auch ein geeignets Umfeld erfordlich, in dem das Projekt gedeihen kann. Ein
solches Umfeld kann man in der Regel jedoch nicht selbst schaffen. Dies
verlangt nach einer Vielzahl von Helfern, die direkt oder indirekt, bewusst
oder unbewusst, dafiir Sorge tragen, dass das Projekt letztlich sein Ziel erre-
icht. In diesem Vorwort mochte ich all diesen Helfern danken, wihrend die
thematische Einfiihrung dem Haupttext vorbehalten bleiben soll.

Danken mochte ich an erster Stelle meinem Doktorvater Herrn Prof. Dr.
Jiurgen Eichberger, dass er sich bereit erklirte, die Betreuung meiner Disser-
tation zu iibernehmen. Er war es auch, der mich auf die duflerst interessante
und spannende Thematik aufmerksam gemacht hat. Bedingt durch den Um-
stand, dass ich den grofiten Teil der Promotion fest im Berufsleben stand,
gestaltete sich die Betreuung sicherlich nicht immer einfach. Nichtsdestotrotz
hat er es stets verstanden, mir fiir meine Forschung die wesentlichen Impulse
zu geben. Er ermoglichte es mir auch, dass ich in der Endphase der Anfer-
tigung der Dissertation eine Assistentenstelle am Lehrstuhl fiir Wirtschafts-
theorie der Universitéit des Saarlandes annehmen konnte. Dies hat die Fer-
tigstellung der Dissertation nachhaltig beschleunigt.

Herrn Prof. Dr. Ralph Friedmann mochte ich danken, dass er sich bereit
erkldarte, neben Prof. Dr. Jiirgen Eichberger die Begutachtung der Disser-
tation vorzunehmen. Nicht zuletzt auf Grund seiner kritischen Lektiire war
es noch moglich, wesentliche Fehler vor Drucklegung der Dissertation zu be-
heben.

Herr Dr. Klaus Schindler stand mir regelmiflig als geduldiger und an-
regungsreicher Gespriichspartner zur Erorterung vielfiltiger mathematischer
Fragestellungen zur Verfiigung. Er wurde hierbei nie miide, meine Aufmerk-
samkeit auf das Wesentliche zu lenken. Thm mochte ich fiir seine fortwihrende
Unterstiitzung danken.

Elizabeth Freeland gebiihrt ebenfalls Dank, da sie nicht nur meine auf En-
glisch abgefassten Arbeitspapiere sondern auch die gesamte Dissertation hin-
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sichtlich Grammatik und Schreibstil kritisch gelesen und mit grofler Geduld
und Sorgfalt verbessert hat. Auf diesem Wege habe ich ihr auch eine Er-
weiterung meiner eigenen englischen Sprachkenntnisse zu verdanken.

Die Herren PD Dr. Willy Spanjers, Dr. Jens Tapking, Dr. Christian
Pfeil und Diplom-Volkswirt Daniel Quinten, alle ehemalige Assistenten des
Lehrstuhls fiir Wirtschaftstheorie, standen mir im Laufe der Promotion héu-
fig mit Rat und Tat bei vielen kleinen und gréfleren Problemen zur Seite. Die
zahlreichen Diskussionen mit ihnen haben sicherlich die Dissertation an vie-
len Stellen verbessert. In diesem Zusammanhang mochte ich auch allen Teil-
nehmern des volkswirtschaftlichen Forschungskolloquiums an der Universitét
des Saarlandes danken, die sich im Rahmen meiner Vortrige zu verschiedenen
Themen als kritische und kenntnisreiche Zuhorer erwiesen haben.

Meiner Familie und meiner Freundin mochte ich ganz besonders fiir ihre
liebevolle Unterstiitzung iiber die Jahre hinweg danken. Ich weif}, dass meine
Eltern, Iris und Adolf Hilpisch, meine Grofleltern, Marlies und Johann Kaus,
sowie meine Freundin Anke Alamanni stets darauf vertraut haben, dass ich
dieses Promotionsprojekt erfolgreich abschlielen werde. Das Wissen um ihr
Vertrauen in mich hat mir sehr viel Kraft gegeben, ohne die mir die Promo-
tion weitaus schwerer gefallen wire. Meine Familie ebenso wie meine Fre-
undin haben mich dariiber hinaus in so vielféiltiger Hinsicht unterstiitzt, dass
man ihren Beitrag zum Gelingen dieses Projektes gar nicht iiberbewerten
kann. Wihrend der Anfertigung der Dissertation und insbesondere in der
Endphase hat gerade meine Freundin grofles Verstéindnis gezeigt, selbst dann,
wenn gewisse Arbeiten wieder einmal viel mehr Zeit in Anspruch genommen
haben als geplant. Sie erwies sich immer wieder als besonders ausdauernder
und aufmerksamer Zuhorer.

Widmen mochte ich die Dissertation dem Andenken an meine Urgrof3-
mutter Elisabeth Graf.
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Chapter 1

General introduction

Simply spoken, dynamic hedging is a device to manage risk as incurred, for
example, by writing options. This thesis sheds light on dynamic hedging from
different perspectives. One focal point of the thesis represents the study of
dynamic hedging strategies in perfect and complete markets. It turns out
that under a certain condition dynamic hedging strategies generate positive
feedback. In this context, positive feedback means buying when prices rise
and selling when they fall. Another focal point is the study of dynamic hedg-
ing in imperfectly liquid markets - or more precisely, in a general equilibrium
framework - for the purpose of exploring the impact of dynamic hedging on
financial markets.

We consider the analysis of dynamic hedging in a setting where markets
are imperfectly liquid to be important for two main reasons. The first is that
dynamic hedging when carried out on a large scale is likely to influence real
financial markets. Therefore, it is worthwhile to gain an understanding of the
economic implications of dynamic hedging. At first glance, it seems sensible
to believe that dynamic hedging, because of its positive feedback property,
contributes to excess volatility in financial markets. This is a striking point
because market volatility is generally considered to be an appropriate mea-
sure for market stability. There is also evidence that dynamic hedging may
even have contributed to recent financial crises like the stock market crash of
1987 or the crisis in 1998. Therefore, a deeper understanding of the economic
implications of dynamic hedging is necessary to prevent such disruptions in
the future and to address regulatory issues.

The second main reason is that the pricing and hedging formulas in which
practitioners rely on in their everyday business are derived from models that
are based on quite unrealistic assumptions about financial markets (e.g.,
perfect liquidity). The analysis of dynamic hedging in imperfectly liquid
markets is a necessary prerequisite to assess the implications of relaxing the

11



12 CHAPTER 1. GENERAL INTRODUCTION

perfectly liquid markets assumption. Such an analysis may thereby help to
improve existing pricing models and applied hedging procedures.

Before we survey recent work in this growing area of research, it seems
helpful to address three important questions related to dynamic hedging.

Systematic behavior, such as positive feedback trading, is likely to arouse
interest among economists seeking to explain individual behavior. A natural
starting point for an economist who examines dynamic hedging might be to
ask: What are the underlying principles that make dynamic hedging strategies
exhibit the positive feedback property? This will also be our starting point in
section 1.1.

As a matter of fact, positive feedback trading is inconsistent with the
standard rationality hypothesis that behavior can be represented as the max-
imization of a suitably chosen utility function. Traditional approaches to
explaining individual behavior (e.g., expected utility hypothesis) and market
phenomena (e.g., efficient market hypothesis) obviously break down in the
presence of dynamic hedgers or ’irrational’ traders. This leads to the second
question: What should an economic model look like that is capable of incor-
porating irrational behavior like positive feedback trading? An appropriate
approach is portrayed in section 1.2.

When asked what impact positive feedback hedging has on financial mar-
kets, most economists would probably reply that it amplifies price move-
ments. This intuition is clear. On the one hand, when a price rise is observed,
dynamic hedgers cause an overshooting by making additional purchases. On
the other hand, when the price of a security falls, dynamic hedgers contribute
to an overshooting with additional selling. It is reasonable to assume that
the mentioned effects crucially depend on the liquidity of the market in which
dynamic hedging is implemented. Consequently, the third important ques-
tion is: What s the actual relationship between dynamic hedging and market
liquidity? Section 1.3 picks up this question.

Equipped with this background knowledge about dynamic hedging, sec-
tion 1.4 sets out the plan for this thesis and sketches its structure. In section
1.4, we also argue why a general equilibrium model suggests itself as a natural
place to analyze economic implications of dynamic hedging.

1.1 Replication and arbitrage

There is hardly any other breakthrough in financial economics that can com-
pare with the one of BLACK and SCHOLES (1973) and MERTON (1973) in
terms of both approach and applicability. FISCHER BLACK and MYRON
SCHOLES, in collaboration with ROBERT MERTON, were the first to derive
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a closed form solution for the price of a European call option that is free of
any ad-hoc elements. Their solution expresses a direct relationship between
the price of a European call option and the relevant market parameters that
influence it, such as the price of the underlying, the risk-less interest rate and
so forth.! Before their pricing formula had become publicly available, option
pricing was a rather mysterious task always involving ad-hoc elements. Up
to now, a separate branch of the financial services industry has emerged that
mainly relies on the NOBEL-prize winning BLACK / SCHOLES / MERTON
theory. Yet the big success of their theory cannot be justified in terms of the
pricing formula alone, but rather in terms of the replication principle and
the arbitrage argument they applied to derive the formula.

After having outlined several common assumptions of standard contingent
claim? pricing models, we want to discuss in this section the replication
principle and the arbitrage argument that together play such a central role
in deriving fair prices for contingent claims. Moreover, we want to give a
brief overview of how these basic concepts may be applied in areas other
than pricing.

As primitives, contingent claim pricing models generally entail a fixed set
of available securities.® Agents regularly not explicitly modelled, can trade
in these securities to transfer wealth through time. Within these models, a
natural question is: What is a fair price for a given contingent claim? It
is clear that the answer to this question crucially depends on the imposed
model assumptions. In general, seven common assumptions can be identified
that contingent claim pricing models share with respect to financial markets
and agents interacting in these markets.

1. Markets

(a) Perfect markets: Markets are perfect in the sense that there are
no transaction costs, that unlimited short-selling is possible and
that securities are available in any fraction. In such markets,
everything happens at light speed as well.

(b) Perfectly liquid markets: Markets are perfectly liquid in the sense

'We reproduce their famous result in sub-section 5.3.2.

2We subsume, under the expression contingent claim, arbitrary claims contingent on
future events. Examples are derivative securities whose prices depend on uncertain future
prices of other securities. Another one is the uncertain amount of money that someone
receives at some future date.

SHuULL (1997) is a standard textbook on contingent claim pricing theory while the book
of BRIvS, BELLALAH, MAI, and DE VARENNE (1998) contains some more recent research.

4We will sometimes refer to these assumptions as the ’standard assumptions’.
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that buy or sell orders of arbitrary magnitude cannot affect secu-
rity prices.

(c) Complete markets: Every contingent claim is attainable via trad-
ing in the available securities.

(d) Arbitrage-free markets: Trading in securities cannot produce some-
thing out of nothing, i.e., risk-less profits are impossible.

2. Market participants

(a) Perfect competition: All market participants act as price takers,
or equivalently, all market participants are atomistic.

(b) Symmetric information: All market participants own the same
information.

(c) Complete information: Market participants have complete infor-
mation regarding relevant market parameters.

It is obvious that these assumptions do not draw a realistic picture of the
real world. However, the advantage of working in such an idealized world is
that very strong results are obtained. For example, BLACK and SCHOLES
(1973) are able to show that in such a world the price of a European call
option depends only on observable market parameters and does not depend
on, let us say, the preferences or beliefs of market participants as one would
probably expect.

For the sake of expositional ease, we want to explain the replication prin-
ciple and the arbitrage argument in a very simple fashion rather than repro-
duce the original argument of BLACK and SCHOLES (1973).5 To begin with,
consider an economy with only two relevant dates, say today and tomorrow,
in which the above seven assumptions are satisfied. Complete markets imply
that a given option (or any other contingent claim) with maturity tomorrow
can today be replicated by an appropriate combination of the available secu-
rities, a so-called replication portfolio. In other words, today there exists at
least one combination of the available securities that has a payoff tomorrow
identical to the payoff of the option. Because of complete and symmetric
information, everyone in the economy can easily identify such a portfolio and
compute the costs to set it up.

°In what follows, we will have in mind something called two state option pricing.
This access to the reasoning behind replication and arbitrage was originally proposed
by SHARPE (1978). We provide a numerical example for two state option pricing in sub-
section 4.4.1.
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At this point, the absence of arbitrage comes into play. It forces the
price of the option to equal the price of the replication portfolio. To see this,
consider the two other possibilities. Assume, for instance, that the price
of the option is higher than the price of the replication portfolio. Selling
the option short and buying the replication portfolio would lock in a risk-
less profit as high as the difference between the two prices. The profit is
actually risk-less because the payoff of the option tomorrow and the payoff
of the replication portfolio tomorrow will compensate each other perfectly.
Conversely, assume that the option is cheaper than its replication portfolio.
Selling the replication portfolio short and buying the option would then lock
in a risk-less profit as high as the price difference. In this case, the reason
for the profit being risk-less is the same as before. Non-satiated investors
would continually try to pursue such risk-less arbitrage strategies in order
to achieve infinite wealth. For markets to be in equilibrium, this must be
excluded. Thus, the only price for the option consistent with the absence of
arbitrage and market equilibrium is the price of the replication portfolio.®

Interestingly, this line of argument proves robust in much more general
settings. For example, if there are more than two dates and markets are still
complete, then there exists a dynamic replication strategy. That is to say
a sequence of replication portfolios generating a cash-flow identical to the
cash-flow of the given option. As we see, the static argument applied in the
two date case can be repeated as many times as necessary. The absence of
arbitrage ensures then that at any date, the price of the option equals the
price of the replication portfolio at that date. Cox, R0ss, and RUBINSTEIN
(1979) propose this route to option prices. In terms of mathematical sophis-
tication, their derivation of a pricing formula for European call options is
much simpler than that of BLACK and SCHOLES (1973).

Another major breakthrough with respect to contingent claim pricing is
the observation that pricing formulas - as obtained by BLACK and SCHOLES
(1973) or Cox, Ross, and RUBINSTEIN (1979) - allow for probabilistic inter-
pretations. To be more precise, the pricing formulas are expectations of the
respective contingent claim’s payoff under an appropriately chosen probabil-
ity measure. The defining property of this so-called risk-neutral probability
measure or martingale measure is that risky securities, such as stocks, have
an expected return that equals the risk-less interest rate. In other words, the
discounted price processes are martingales under this probability measure.

0We should note that the original argument of BLACK and ScHOLES (1973) differs a
bit from the one outlined here. They argue that in complete markets a given European
call option can be combined with the underlying security in such a way that the overall
position becomes risk-less. In the absence of arbitrage, the overall position must therefore
yield the risk-less interest rate.
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Path-breaking work in this regard is due to HARRISON and KREPS (1979).”
DuFFIE (1996, xiv) notes that ”... Harrison and Kreps (1979) gave an al-
most definitive conceptual structure to the whole theory of dynamic security
prices.”

Although the assumptions under which the replication principle and the
arbitrage argument perfectly apply are rather restrictive, standard models
relying on these assumptions are the most popular models in practice. A
preferred approach of practitioners for overcoming their inherent shortcom-
ings is to adjust the input parameters heuristically instead of improving the
models themselves. Nevertheless, a tremendous amount of research has been
conducted that deals with diverse generalizations of contingent claim pricing
models. The relaxation of one or more of the above listed assumptions is
central to this line of literature.®

We now turn to other possible areas of application for the replication
principle and the arbitrage argument. We briefly want to sketch out three
areas: dynamic hedging, synthesizing and information discovery, the first of
which is of particular importance for our purposes.

The pricing of contingent claims is still an important issue for practition-
ers in the financial services industry. However, another area of application,
dynamic hedging, has become at least equally important. Dynamic hedg-
ing, as a device for buyers and sellers of contingent claims, to manage risk
has become a financial industry-wide practice. For example, consider a fi-
nancial institution that has sold European call options to its customers for
which no liquid market exists. The financial institution faces the risk of a
rising underlying price since it may incur losses if the price rises high enough.
The institution can dynamically hedge the sold options to insure against the
losses. In order to achieve such a hedge, it has to implement a trading strat-
egy, involving the underlying security and a risk-less bond, whose cash-flow
perfectly matches the cash-flow of a long position in the options. Provided

"Noteworthy extensions can be found in HARRISON and PLISKA (1981) as well as
Cox and HuaNG (1989), among others. For comprehensive treatments of the martingale
approach, refer to PLISKA (1997) or KARATZAS and SHREVE (1998). We will introduce
this approach to finance in part II of the thesis.

8 Pioneering work on the incorporation of transaction costs into contingent claim pricing
models is found in LELAND (1985). In chapter 3, we review several articles about dynamic
hedging in imperfectly liquid markets. MAGILL and QUINZIT (1996) provide a survey of
recent developments in the theory of incomplete financial markets. FREY (1997) surveys
the large body of literature about stochastic volatility.

Recently, a lot of effort has been put into the development of a unifying framework
capable of incorporating different market frictions simultaneously (e.g., transactions costs,
short sale restrictions, incomplete markets). CVITANIC (1997) reviews this framework
which is found in the literature under the expression 'constrained markets’.
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markets are complete and frictionless enough, the trading strategy generates
at maturity a long position in the options. Combined with the short position
of the sold options, the financial institution has a risk-less net position.’ This
illustrates why sound hedging techniques have been the enabler for the fast
growing derivatives industry in both the exchange segment and the over-the-
counter (OTC) segment.'’ In regard to the OTC segment, DUFFIE (1998,
419) remarks:

"Investment banks routinely sell securities with embedded op-
tions of essentially any variety requested by their customers, and
then cover the combined risk associated with their net position
by adopting dynamic hedging strategies.”

A closely related area of application is synthesizing of contingent claims.
Suppose a financial institution identifies a need for a derivative security that is
not publicly available for sale. By implementing a dynamic hedging strategy,
as described above, it can generate the needed derivative by itself. In such a
case, i.e., where there is no real counterpart to the dynamic hedging strategy,
the strategy is said to synthesize the desired derivative. The most popular
form of such a trading strategy is portfolio insurance. Portfolio insurance
synthesizes a European put option to ensure that the value of a given portfolio
of securities does not fall under a certain floor. We will return to portfolio
insurance later in the chapter. In this thesis, however, we subsume both
types of trading strategies, dynamic hedging and synthesizing, under the
expression dynamic hedging since there is apparently no formal difference
between the two.

Yet another area of application is information discovery. Market partici-
pants may interchange the role of variables in pricing models. If, for example,
someone is interested in the volatility of a security, he / she can use available
option prices as input into a pricing formula to determine the volatility of
the underlying security according to that formula. One would then speak of
the implied volatility.'*

9However, one should not forget that model risk, i.e., the risk of applying an inadequate
dynamic hedging scheme, arises as a new source of risk. GREEN and FIGLEWSKI (1999),
for example, study this kind of risk.

10ScHOLES (1998, 350) describes the two different segments as follows: ”Financial in-
stitutions in the OTC industry offer customized derivative products to meet the specific
needs of each of their clients; the exchange industry offers standardized products to reach
a richer cross section of demand.”

Interestingly, the foundation of the Chicago Board Options Exchange (CBOE) and the
publication of the seminal article of BLACK and SCHOLES (1973) roughly coincided.

HURUBINSTEIN (1994), for instance, is a recent study exploring this area of pricing model
application.
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1.2 Informed and uninformed trading

Ever since its formulation, the theory of efficient markets has spurred a lot
of controversy among theoretical and empirical researchers, as well as among
practitioners. In the following, we will take a glance at this theory and some
of the reasons for the continuing controversy. Moreover, we will briefly char-
acterize the noise trader approach to finance. This approach seems capable
of resolving some puzzles that surround the theory of efficient markets. As
we will argue, several empirical findings and market phenomena, like ex-
cess volatility and dynamic hedging, are compatible with this more recent
approach, whereas they are incompatible with the still dominating efficient
markets paradigm.

In principle, the theory of efficient markets states that asset prices in
financial markets fully reflect information available to the investment com-
munity. One generally distinguishes three forms of the efficient market hy-
pothesis (EMH). The weak form says that security prices reflect all informa-
tion contained in public market data, such as past prices and trading vol-
umes. The semi-strong form postulates that prices reflect all publicly known
pieces of information, such as market data as well as earnings, dividends,
etc. Finally, the strong form says that security prices reflect all available
information, either public or private.!?

Of course, the theory of market efficiency, provided it proves robust, has
far-reaching implications for almost all players in financial markets. A ra-
tional trader, for instance, would never try to beat the market performance
without having fundamentally new information. Trading triggered by news
about fundamentals is usually referred to as informed trading. To avoid mis-
conceptions: the EMH does not require that a priori all traders be informed.
Markets themselves act as a transmission mechanism for new information.'?

Because of its important implications, it is no wonder that a lot of em-
pirical studies have been undertaken to test the different forms of the EMH.
The early theoretical and empirical work is surveyed in FAMA (1970). How-
ever, the more recent work is surveyed in its successor article FAmMA (1991).
Empirical evidence regarding the robustness of the EMH is mixed. It deliv-
ers arguments for both advocates of the theory and opponents. As a result,
there is an ongoing debate about the interpretation of the empirical results

12Tn chapter 10, JONES (1998) introduces market efficiency and related fields.

13Regarding this mechanism, GROSSMAN and STIGLITZ (1980, 393) note: ”When in-
formed individuals observe information that the return to a security is going to be high,
they bid its price up, and conversely when they observe information that the return is
going to be low. Thus the price system makes publicly available the information obtained
by informed individuals to the uninformed.”
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and about the appropriateness of the applied methods to test the EMH.
Some, like GROSSMAN and STIGLITZ (1980), even argue that information-
ally efficient markets are impossible.

Much of the controversy is caused by conceptual problems in testing the
EMH. The most challenging issue in testing the EMH is that it cannot be
tested as a stand-alone; an equilibrium model must be utilized to decide upon
fair’ prices.!* As a matter of fact, this joint-hypothesis problem makes it
quite impossible to decide whether an anomaly, in terms of the respective
equilibrium model, classifies as a supporting argument or a rejecting one
in regard to the EMH. Indeed, the number of anomalies reported in the
empirical literature is impressive and some anomalies still await plausible
explanations.!® Therefore, it is quite natural that researchers have tried, and
continue to try, to develop alternative approaches to market equilibrium.
The hope is that alternative approaches are capable of explaining alleged
inefficiencies and anomalies.

By now, a very popular alternative to the standard rationality hypothesis,
which builds the basis for common equilibrium models, is the noise trader
approach as presented in BLACK (1986) or SHLEIFER and SUMMERS (1990),
among others.!® Contrary to the standard rationality hypothesis, the noise
trader approach explicitly allows for a fraction of the investment community
to be irrational and to conduct uninformed trades, i.e., trades based on noise.
In this context, noise can be anything but fundamental news that triggers
actions of traders.

According to the EMH, rational investors can exploit mispricings caused
by irrational investors. Consider, for example, a stock that trades at a funda-
mentally justified price, i.e., its intrinsic value.!” Irrational traders, forming
beliefs on noise, may bid down its price by accumulated sell orders. Accord-
ing to the argument, if the stock price falls far enough, then rational traders
step in to buy the stock. After the price has returned to the rational level,

HFaMA (1991, 1576) remarks in this respect: ”This point ... says that we can only test
whether information is properly reflected in prices in the context of a pricing model that
defines the meaning of 'properly.” As a result, when we find anomalous evidence on the
behavior of returns, the way it should be split between market inefficiency or a bad model
of market equilibrium is ambiguous.”

Refer to CAMPBELL, Lo, and MACKINLAY (1997) or CUTHBERTSON (1996) for details
on the theoretical background of EMH tests.

"Bopik, KANE, and MARCUS (1996) discuss in section 12.4. several anomalies, such
as the "January effect’ or the ’small firm effect’. For further details on this topic, consult
FaMA (1991) and the many references given therein.

K yLE (1985) introduces the expression noise trader.

I"Refer to chapter 4 of CUTHBERTSON (1996) for a description of alternative methods
to determine the intrinsic or fair value of a security.
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this creates a risk-less arbitrage profit as high as the difference between the
actual price and the fundamentally justified price, i.e. the rational price.
Unless the arbitrage opportunity has disappeared, rational traders will keep
on buying. Common models of equilibrium (implicitly) assume that this de-
mand is perfectly elastic so that prices are always on their fundamentally
justified level.

In contrast, the noise trader approach rests on the central assumption that
arbitrage is limited due to two different kinds of risk, as SHLEIFER and SUM-
MERS (1990, 21) explain. The first is fundamental risk, meaning that changes
in fundamentals may suddenly change the intrinsic value of a security. The
second is noise trader risk, as investigated in DELONG, SHLEIFER, SUM-
MER, and WALDMANN (1990a). It expresses the possibility that uninformed
traders may bid the price even further away from the intrinsic value. As a
consequence of these types of risk, demand by rational traders is imperfectly
elastic, thereby limiting arbitrage. Uninformed trading - contradicting the
EMH - may therefore have a persisting impact on security prices. Empirical
evidence suggests that this approach is consistent with market realities.!®

A very common form of uninformed trading in the financial marketplace
is positive feedback trading. A trader following a positive feedback trading
strategy buys securities after a price rise and sells securities after a price fall.
Such trades are executed contingent on observed price movements rather than
on fundamental news. DELONG, SHLEIFER, SUMMER, and WALDMANN
(1990b, 381-382) list four different types of strategies that lead to positive
feedback:

”These strategies include portfolio choice based on extrapolative
expectations, the use of stop-loss orders, purchases on margin
which are liquidated when the stock price drops below a certain
point, as well as dynamic trading strategies such as portfolio in-
surance.”

The last one on this list of four is of course the most important one consid-
ering the topic of this thesis. In chapter 5, we will demonstrate that not only
portfolio insurance induces positive feedback trading, but that this holds true
for dynamic hedging of arbitrary contingent claims with convex payoffs. It is
intuitively plausible that positive feedback trading, if simultaneously imple-
mented by enough agents, can disturb markets in a systematic way, i.e. prices
tend to overshoot. The argument supporting this statement is as follows. On
one hand, after a price rise, positive feedback traders become active and buy
securities. This additional demand causes prices to rise even further, thus

I8SHLEIFER and SUMMERS (1990, 22-23) cite some empirical findings in this respect.
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they overshoot. On the other hand, after a market decline, positive feedback
traders appear and sell securities, which leads to a further decline. Again,
prices overshoot. DELONG, SHLEIFER, SUMMER, and WALDMANN (1990b)
argue that the effect of positive feedback trading may even be amplified by
rational traders front-running the feedback trades to profit from anticipated
price overreactions.

Overreactions of stock market prices have been reported by DEBONDT
and THALER (1985) and DEBONDT and THALER (1987), among others.
Statistically, overreaction means that security returns show positive serial
correlation over some short period of time. However, there is also empirical
evidence of negative serial correlation for longer periods. If it turns out that
short periods of positive serial correlation and long periods of negative serial
correlation coexist, then security returns tend to be mean-reverting. Indeed,
researchers have found considerable evidence for mean-reversion in security
returns.'?

Moreover, the presence of positive feedback traders in markets could im-
ply higher market volatilities since positive feedback causes overreactions in
both directions. DELONG, SHLEIFER, SUMMER, and WALDMANN (1989)
argue that positive feedback trading may therefore be a possible explana-
tion for excessive volatility as reported by SHILLER (1981) and others.?’ Yet
PORTERBA and SUMMERS (1986) find that volatility shocks vanish rapidly.
This observation is in line with the mean-reversion hypothesis. All in all, we
can dare to assert that the impact of positive feedback trading is of tempo-
rary nature at most. When analyzing dynamic hedging in imperfectly liquid
markets, it seems adequate enough to take into consideration the temporary
nature of effects from dynamic hedging.

In part IIT of the thesis, where we analyze dynamic hedging in a general
equilibrium context, the empirical findings as mentioned before, are indeed
accounted for. This is due to the requirement that security price processes
be tied to fundamentals at the terminal date of the model economy. Before
the terminal date, however, prices may be influenced by uninformed trading.
Considering this, the equilibrium models that are investigated in part III are
principally consistent with both overreaction and mean-reversion.

YThe article by DEBONDT and THALER (1989) gives a brief survey of this line of
empirical literature.

20A topic related to excessive volatility is that of speculative bubbles. FrLoop and
HoDRICK (1990) outline several aspects of this relationship.
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1.3 Dynamic hedging and market liquidity

In the last section, we have argued that positive feedback trading strategies,
like dynamic hedging, may cause overreactions in security prices and thereby
potentially increase market volatilities. It is reasonable to assume that the
likelihood of the realization for such volatility increases as well as its eventual
magnitude are basically determined by two factors. The first factor is the
liquidity of markets in which positive feedback traders are active. The second
is the market weight of traders following positive feedback trading strategies.
In this section, we will discuss the importance of these two factors for dynamic
hedging from a theoretical (sub-section 1.3.1) and an applied perspective
(sub-section 1.3.2). The emphasis in sub-section 1.3.1 lies on the liquidity
aspect while it focuses more on the market weight aspect in sub-section 1.3.2.

Throughout this section we use the word liquidity in the following sense.
We say that a security market is perfectly liquid if buy or sell orders cannot
affect security prices. Accordingly, markets are said to be imperfectly liquid
if security trading can affect prices. Similarly, a single market is said to be
more liquid in situation 1 compared to situation 2 if equal buy or sell orders
move security prices less in situation 1 than in situation 2. It will also prove
useful to associate market liquidity with the elasticity of aggregate demand
in that market.

1.3.1 A theoretical perspective

In this sub-section, we examine a rather stylized model of a financial market.
In the benchmark case, all seven assumptions discussed in section 1.1 remain
in force. To highlight the importance of market liquidity for dynamic hedging
and pricing of contingent claims we then drop the assumption of perfectly
liquid markets.?! This allows us to provide most of the intuition behind the
results derived in part III of the thesis. To keep our argument as simple as
possible, we restrict the analysis to a static (or one shot) economy. However,
the argument carries over to a dynamic setting in a straightforward manner.

In a financial market characterized by the seven assumptions as found
on page 13, two different groups of agents interact with each other. Agents
trade today in a stock and a risk-less bond. The stock is in fixed supply of @
shares and pays tomorrow an uncertain liquidating dividend while the bond
is in zero net supply. One group of the agents forms rational expectations
about the uncertain future returns of the stock. Agents of this group are
called non-hedgers. The other group consists of agents who hedge a given

2IPRITSKER (1997) examines the relationship between positive feedback trading and
market liquidity as well.
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Furopean call option on the available stock by investing in an appropriate
replication portfolio. Since markets are complete, it is guaranteed that the
option can be replicated. Agents out of this group are called hedgers.

We denote by ¢™ the non-hedgers’ aggregate stock demand and by ¢
the hedgers’ aggregate stock demand.?? Clearly, the stock market is in equi-
librium if aggregate supply equals aggregate demand,

M+ ot =a. (1.1)

It is now important to realize that in complete markets the stock demand
of the hedgers is independent of the present stock price. It only depends
on the uncertain liquidating dividend that is paid tomorrow and, of course,
on tomorrow’s payoff of the call option.?® The present stock price does not
come into play until the hedgers want to evaluate the replication portfolio to
deduce the price of the option. Conversely, it is reasonable to assume that
the non-hedgers’ demand depends on the stock price today. If we combine
these considerations with (1.1) we finally end up with,

¢ (So) =a— o™, (1.2)

where Sy denotes the stock price today. (1.2) states that Sy must be in equi-
librium such that the stock demand by the non-hedgers ¢™ equals aggregate
supply of the stock @ adjusted for the stock demand by the hedgers ¢,
Since the hedgers hedge European call options, their stock demand must be
strictly positive, ¢ > 0.2

As the benchmark case for our analysis we have chosen the case of per-
fectly liquid markets as already mentioned. In the present context, the as-
sumption of perfectly liquid markets is tantamount to the assumption of per-
fectly elastic stock demand by the non-hedgers.?” In other words, at a given
price S, non-hedgers are willing to buy and sell the stock in any quantity.
Figure 1.1 displays such a situation. Consider first the case where there is no
demand by hedgers. Equilibrium in the stock market is then determined by
the intersection of the non-hedgers stock demand with the aggregate supply
(point A). If there is strictly positive hedge demand of ¢, then equilibrium
is obtained in point B and for a double as high hedge demand, 2-$*, in point

22We abstract here from possible problems in aggregating among agents.

23 At this stage, the statement is not more than mere assertion but chapter 5 verifies
this assertion for the Cox, R0ss, and RUBINSTEIN (1979) model.

24 Gee, for example, section 14.5 of HULL (1997).

25 This interpretation of market liquidity is also found in GAMMILL and MARSH (1988,
42), GENOTTE and LELAND (1990) or FREY (1995, 1-2) to name just a few.
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Figure 1.1: Dynamic hedging in a perfectly liquid market.

C. Notably, the figure illustrates that in perfectly liquid markets hedge de-
mand cannot affect the equilibrium stock price. No matter at what point the
stock market equilibrium prevails, the equilibrium stock price remains at S;.

Consider now the more realistic case of an imperfectly liquid stock mar-
ket, or equivalently, of imperfectly elastic stock demand by the non-hedgers.
The bond market, however, should remain perfectly liquid. For simplicity,
assume a strictly downward-sloping stock demand function. The picture that
emerges in such a market is provided in figure 1.2. As before, consider first
the case with no hedging at all. Equilibrium in this case is indicated through
point A’ where stock demand by the non-hedgers equals aggregate stock sup-
ply. If we introduce strictly positive hedge demand of ¢, the equilibrium
moves to point B, and if we even double the hedge demand to 2 - ¢, equi-
librium moves further to point C’. The corresponding prices equating supply
and demand are Sj, S| and S{/, respectively. As we see in figure 1.2, strictly
positive hedge demand by the hedgers causes the equilibrium stock price to
increase from S§ to S{. It also increases with increasing stock demand by the
hedgers (from S, to Sy). We observe that dynamic hedging can move prices
in imperfectly liquid markets when applied on a large scale. This contra-
dicts the paradigm of standard contingent claim pricing models where such
feedback effects are de facto ruled out by the assumption of perfectly liquid
markets.

Imperfectly liquid markets also have important implications for the pric-
ing of derivative securities. To be precise, assume that ¢ now represents
the number of shares of the stock needed to hedge exactly one European call
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Figure 1.2: Dynamic hedging in an imperfectly liquid market.

~H
option. Furthermore, let ¢ represent the number of bonds needed for that
purpose. By the replication principle and the arbitrage argument of section
1.1, a hedger can derive the price C, of a single call option easily from,

=5 ¢"+5 3. (1.3)

S’B‘ denotes the price of a unit of the bond today. Since the bond market
is perfectly liquid by assumption, this price is not influenced by the bond
demand of the hedgers. The arbitrage argument implies that if (1.3) is vio-
lated, risk-less arbitrage profits are possible. Since this should be impossible
in equilibrium, (1.3) gives the price of one call option contract. If one uses
this argument to derive the price C{ of two option contracts, one similarly
obtains,

Cl =S (2" + 520 (1.4)

Here we bear in mind that the stock and bond demand of hedgers is inde-
pendent of the respective prices today. We can therefore simply double the
bond and stock positions. According to (1.4), the price of one option con-
tract consistent with no arbitrage is % -Cy. Unfortunately, this price does not
equal the price of the option contract if only one single option is replicated.
The option price in the case where two options are hedged exceeds the option
price in the case where only one option is hedged. Formally,

. H N*-~
RTINS T

Co 8"+ 550

1 1
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where we use S; > S, (see figure 1.2).

In summary, the appealing BLACK / SCHOLES / MERTON approach ob-
viously fails in imperfectly liquid markets. It no longer delivers a unique price
for a given contingent claim even though markets are complete and replica-
tion is possible. In imperfectly liquid markets, the price of a contingent claim
also depends on the aggregate demand for the claim - a result we formally
derive in chapter 6. Moreover, dynamic hedging of contingent claims influ-
ences markets considerably if one drops the assumption of perfect liquidity.
In our rather simple setting, rises in the stock demand by the hedgers make
stock prices rise as well.

We now turn to empirical and anecdotal evidence supporting our claims
made in this sub-section.

1.3.2 An applied perspective

There is no doubt that positive feedback trading and, in particular, dynamic
hedging takes place in financial markets. There should also be no doubt that
markets are imperfectly liquid in general. One has to be a bit more careful,
however, in asserting that dynamic hedging is likely to disturb asset prices
in financial markets and that the BLACK / SCHOLES / MERTON approach
is not applicable to real markets. A question that has to be addressed first
is whether real market conditions can prevail, such that dynamic hedging
can affect prices in financial markets. In this sub-section we therefore pro-
vide evidence that the potential of dynamic hedging to impose feedback on
markets can indeed be realized. Due to little empirical work on this topic,
we additionally take a brief look at two events that have attracted consider-
able attention in both the academic and the non-academic world. The first
one is the stock market crash of October 19, 1987 and the second one is the
near-collapse of Long-Term Capital Management (LTCM) in 1998.

Of course, we can not paint a full picture of all facets of dynamic hedging
and liquidity related problems here and we do not even intend to do so. We
can, however, highlight those details that may help in gaining an understand-
ing of how dynamic hedging and market liquidity are related in reality. As
a supplementary text for the issues raised in this sub-section, the recently
published book by JACOBS (1999) may be consulted. It is presently one of
the most comprehensive informal treatments of dynamic hedging and its eco-
nomic implications. The long list of references given in the book, including
theoretical, empirical and applied material, is noteworthy as well.
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Empirical evidence

Among empirical researchers, the impact of dynamic hedging on financial
markets has experienced only little attention. KAMBHU (1998) is the first,
and to our knowledge, the only one to empirically assess feedback effects
from dynamic hedging.?® He focuses on the interest rate options markets.
The reasoning he gives for this choice is that ”[t|he concentration of sold
options among dealers ... makes it an ideal place to explore how dealers’
hedging of options affects underlying markets.” KAMBHU (1998, 36).

Even though KAMBHU (1998, 36) finds that, in general, market liquidity
is sufficient to absorb the hedge demand by the option dealers, he finds
contrary evidence for the mid-term segment of the yield curve. He concludes:

” At maturities beyond three years, however, if dealers fully re-
balance their hedge positions, dynamic hedging in response to a
large interest rate shock could be of significant volume relative
to transaction volume and outstanding contracts in the most lig-
uid trading instruments. At this segment of the yield curve, the
potential for positive feedback when a large interest rate shock
occurs cannot be dismissed.” KAMBHU (1998, 46).

Comparing option prices, he also discovers that the relatively low liquid-
ity in the mid-term segment seems to be priced in by the dealers. KAMBHU
(1998, 44) reports that in this segment, demand generated by dynamic hedg-
ing can amount to 21% of the overall daily trading volume if an interest rate
shock of 75 basis points occurs. However, he notes on page 46 that ” [t]he ul-
timate impact of dealers’ dynamic hedging would depend on the relative size
of different types of market participants.” Although not exhaustive, the re-
sults of KAMBHU (1998) clearly support several findings of recent theoretical
studies of dynamic hedging.?”

To finally judge the results of KAMBHU (1998), one has to take into ac-
count that interest rate markets are generally among the most liquid markets.
The observed effects would have probably been much stronger if the analysis
was carried out in a less liquid market, for instance the market for a single
stock.

The practitioners’ view

Standard option pricing models, such as those proposed in BLACK and Sc-
HOLES (1973) or Cox, Ross, and RUBINSTEIN (1979), do not give hints

20K AMBHU (1998, 37) himself remarks that ” ... no empirical proof exists that positive
feedback affects market prices ...”
27See chapter 2.
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regarding the importance of liquidity for dynamic hedging and option pric-
ing. Empirical evidence is rare as well. Nevertheless, practitioners relying
on standard models in their everyday work are aware of the importance of
market liquidity. The following quote illustrates this very well.

”Von entscheidender Bedeutung ist zweifelsohne die Liquiditéit
des Basiswertes. Sie spielt auch schon im Vorfeld - also bei der
Konstruktion des neuen Scheins - eine wichtige Rolle ... Bei einem
einfachen Call Warrant auf die DaimlerChrysler-Aktie kénnen wir
mit einem Auftrag schon 10000 Aktien zu einem einheitlichen
Preis iiber Xetra ordern. Bei anderen Titeln sind es pro Auftrag
und Kurs manchmal nur 1000 bis 2000 und weniger. ... Der
Spread spiegelt den Grad der Liquiditéit des Basiswertes wider.
Je illiquider die zugrundeliegende Aktie zum Beispiel ist, desto
grofer sind einerseits die Geld- / Briefspannen fiir die betreffende
Aktie und anderseits die Spreads fiir den jeweiligen Schein ...”
HANDELSBLATT (October 28, 1999, 48).

These statements, made by derivatives executives of investment bank
WARBURG DILLON READ, emphasize that there may exist considerable dif-
ferences in the liquidity of common stocks. As the executives point out,
differences in the liquidity of underlying markets make it necessary to adjust
option prices accordingly. Our abstract discussion in the previous sub-section
argues why this is reasonable. Similarly, KAMBHU (1998, 41) discovers that
"[flor dynamic hedge adjustments, dealers are likely to use the most liquid
instruments as hedging vehicles.”

This shows that market participants are actually aware of the importance
of market liquidity for the hedging and pricing of derivative instruments. Yet
financial risk management in banks and corporations usually focuses on mar-
ket risk management and credit risk management.?® Obviously, liquidity risk
seems less important.?? Nevertheless, central banks consider this kind of risk
very important. In the final report of a joint research project about mar-
ket liquidity, positive feedback trading and market volatility, central bankers
involved in the project describe their motivation for the project as follows:

” A desire to better understand the dynamics of market liquidity
motivated the research project. If a growing number of market

28 Market risk refers to the risk that security prices, interest rates, etc. can change in an
unfavorable way, whereas credit risk means the risk that a counterparty may fail to meet
its obligation.

29DAv and MASSARO (1999, 49) define liquidity risk as ” ... the risk that a firm or
party will be unable to meet its cash-flow when it is due, largely because it cannot receive
full value for financial instruments that it is forced to sell.”
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participants are relying on market liquidity in their investment
and risk management choices, then the robustness of that mar-
ket liquidity would appear to be an important issue. One set of
market participants who rely on market liquidity are those firms
engaged in dynamic trading strategies, such as dynamic hedging
or portfolio insurance. Previous research has highlighted the pos-
sibility that such strategies could, at times, have adverse reper-
cussions for market functioning.” BANK FOR INTERNATIONAL
SETTLEMENTS (1997, 1).

The stock market crash of 1987

In the introduction of his survey article about stock market crashes, KLEIDON
(1995, 465) writes:

”Stock market crashes, defined as precipitous declines in value for
securities that represent a large proportion of wealth ..., are rare,
difficult to explain, and potentially catastrophic. During four
trading days in the crash of October 1987, the U.S. stock market
fell by about thirty percent, wiping out roughly one trillion dollars
of equity. On October 19 alone, Black Monday, the market fell
by over twenty percent.”

A market decline as sharp as the crash of October 1987 is likely to draw
a lot of attention; particularly since the crash of October 1987 was ”... the
largest one-day drop in the history of major stock market indexes from Feb-
ruary 1885 through the end of 1988.” [SCHWERT (1990, 77)] Indeed, the 1987
stock market crash has initiated a lot of studies carried out by governmental
authorities, financial market players and academic researchers. Some of the
theoretical work, explicitly aimed at explaining the crash, will be reviewed
in chapter 2, section 2.4.

Even though the effort to explain the stock market crash has been tremen-
dous and still continues to be so, things are far from being completely clear.
Without question, however, dynamic hedging played an important role dur-
ing the crash. A very popular dynamic hedging program at that time was
portfolio insurance, a dynamic hedging strategy that, as already mentioned,
replicates a European put option. These strategies were used to insure se-
curity portfolios against a fall in value under a predetermined floor. At
first sight, their appeal to investors is understandable.? In theory, they are

S0LELAND (1980) as well as BENNINGA and BLUME (1985) study the question for whom
the implementation of portfolio insurance strategies is indeed advantegous (or optimal).
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supposed to protect a portfolio from large depreciations while providing un-
limited potential for appreciation. The rapid growth of such programs at
that time also has to be seen in the light of portfolio insurance firms ag-
gressively marketing dynamic strategies as a risk management device. These
firms specialized in selling dynamic strategies as an alleged substitute for real
derivative securities.>’ Lessons learned from the crash teach that synthetic
derivatives, in contrast to their real counterparts, may fail to fulfill their
promises in practice. One major reason is that typical hedge programs do
not incorporate that they themselves, if implemented on a large scale, can
cause market conditions they are intended to protect against.

Due to the absence of outstanding news about fundamentals, the PRESI-
DENTIAL TASK FORCE ON MARKET MECHANISMS concentrated on internal
market factors, such as portfolio insurance, program trading and stock in-
dex arbitrage, during its investigation of the 1987 crash.®> The qualitative
and quantitative findings of the PRESIDENTIAL TASK FORCE ON MARKET
MECHANISMS are summarized in GAMMILL and MARSH (1988).33

From table 1 in GAMMILL and MARSH (1988, 29-30), one can calculate
the proportion of total daily selling volume induced by portfolio insurance
programs. In the stock market, that proportion had reached 15.6% on Octo-
ber 19 as seen in table 1.1.

Table 1.1: Selected stock market figures in October 1987.

stock market portfolio insurance | share
sell volume [mUSD] | sell volume [mUSD] | [%]
October 15 4902 257 5.2
October 16 6959 566 8.1
October 19 11197 1748 15.6
October 20 9594 698 7.3

Due to considerable transaction cost savings, portfolio insurers mainly
used stock index futures to carry out necessary hedge adjustments. There-
fore, it is not surprising that the figures for the futures markets are even
more persuasive. The share of portfolio insurance induced selling in the fu-
tures markets reached peaks of over 27% on October 19 and October 20.

31See JACOBS (1999) for more background information on the role of the purveyors of
portfolio insurance in promoting dynamic trading strategies to different groups of investors.

32Refer to the survey article of CANINA and FIGLEWSKI (1995) for an introduction to
program trading and stock index arbitrage.

33The final recommendations (e.g., circuit breakers) are documented in GREENWALD
and STEIN (1988).
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Corresponding data is found in table 1.2.

Table 1.2: Selected futures market figures in October 1987.

futures market portfolio insurance | share

sell volume [mUSD] | sell volume [mUSD] | [%)]

October 15 12655 968 7.6
October 16 15347 2123 13.8
October 19 14801 4037 27.3
October 20 10152 2818 27.8

31

Estimates for the proportion of market capitalization that was subject
to portfolio insurance in 1987 range from only 2 to 3%.3* Considering these
figures, the fast rise and, in particular, the eventual high level of the portfolio
insurers’ share in total selling volume is surprising. What we learn from
this is that even if the market share of dynamic hedgers is relatively low,
positive feedback can push their relative share in total daily trading volume
to extraordinary levels.

The near-collapse of LTCM

Although the stock market crash of 1987 is outstanding in different respects,
the world financial crisis in 1998 exhibits similar characteristics.*® The strik-
ing point about the crisis in 1998 is that it was a world-wide crisis with fragile
economic environments particularly in Asia, Russia and Latin America. An
often cited victim of the 1998 turmoil is LTCM. Among its most prominent
founding partners are MYRON SCHOLES and ROBERT MERTON.?® The com-
pany’s main investment vehicle, the Long-Term Capital Portfolio, classifies
as a so-called hedge fund.3” In their final report, governmental investigators
of the PRESIDENT’S WORKING GROUP ON FINANCIAL MARKETS point out
that "LLTCM sought to profit from a variety of trading strategies, including
convergence trades and dynamic hedging.” (page 60). Additionally, the fund
used extreme leverage to boost its performance.

3 GENOTTE and LELAND (1990, 999) report in footnote 2: "Best estimates suggested
$70-100 billion in funds were following formal portfolio insurance programs. On a pre-crash
total stocks value of about $3.5 trillion, this represents 2-3 percent. Of course, informal
hedging strategies as stop-loss selling may have amounted to considerably more than this

”

35Gee, for instance, NUSSBAUM (1998) for a commentary on the state of the world
economy at that time.

36 A case study of the LTCM case may also be found in Coy, WOOLLEY, SPIRO, and
GLASGALL (1998).

3TThe report of the PRESIDENT’S WORKING GROUP ON FINANCIAL MARKETS (1999)
offers a detailed description of such funds and their favorite investment practices.
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After huge losses of 1.8 billion USD in August 1998, its leverage ratio rose
dramatically from 54 to 166.3® By the end of August, 125 billion USD in
assets were supported by a capital base of 2.3 billion USD. The capital base
shrunk further to 600 million USD by mid-September, supporting balance
sheet assets worth about 100 billion USD.%’

In September 1998, LTCM faced financial markets characterized by a
high volatility making hedge programs demand rapid and huge portfolio re-
balances. Furthermore, the drying up of liquidity in crucial markets and the
flight to quality’ accelerated as a consequence of even worse economic con-
ditions world-wide. The PRESIDENT’S WORKING GROUP ON FINANCIAL
MARKETS has found that the hedge programs that LTCM was following at
that time demanded huge hedge adjustments. In fact, they would have ex-
ceeded by far the maximum of what the different markets would have been
able to absorb. As a result, LTCM could not execute necessary trades. LTCM
was caught in a liquidity trap. Fears that the stability of the global financial
system could become even more fragile made major financial institutions -
under the lead of the Federal Reserve Bank - recapitalize the fund in Sep-
tember 1998. In the end, this step successfully prevented the bankruptcy of
LTCM with potentially prolific consequences for the global financial system.

It is worth pointing out that the main difference between the stock market
crash of 1987 and the crisis in 1998 is the manner in which dynamic hedging
became market influencing. In 1987 it was the simultaneous use of portfolio
insurance programs by many market participants. In contrast, the near-
collapse of LTCM in 1998 was primarily caused by the high leverage that
LTCM built up. Besides this difference the absolute amount of money being
dynamically hedged is nonetheless comparable. The severity of the LTCM
case is illustrated by the fact that in 1998 assets of LTCM alone totalled
125 billion USD compared to 100 billion USD subject to portfolio insurance
schemes in 1987. It is also noteworthy that LTCM’s off-balance volume in
derivatives contracts amounted to incredible 1400 billion USD in notional
value.*

This finishes our general discussion of dynamic hedging so that we can
now proceed to the subsequent section with an outline of the plan for the
remainder of this thesis.

38The leverage ratio gives the relationship between the capital base and balance sheet
assets.

39See JACOBS (1999, 285).

10See PRESIDENT’S WORKING GROUP ON FINANCIAL MARKETS (1999, 62).
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1.4 Organization of the thesis

After having outlined the organization of the thesis, some notes on notation
will be given. The basic structure of the thesis is as follows. The thesis
is divided into three parts. Part I ”Introductory Part” is comprised of two
chapters (1 and 2) with introductory and mostly informal material. Part
IT ”Theoretical Foundations”, which is comprised of two chapters (3 and
4) as well, introduces basic theoretical concepts applied in part III. Part
ITI ” Applications” applies the tools developed in part II to three different
economic settings. Each setting is treated in a separate chapter (5, 6 and 7).
In the sequel, we give an overview of how the single chapters are structured.

Every chapter (with chapter 1 being the exception) is accompanied by
an introduction and a summary of the central results elaborated on within
the respective chapter. To begin, chapter 2 of part I surveys work which
is closely related to ours. The chapter is intended to introduce the reader
to recent work about dynamic hedging in imperfectly liquid markets. While
these studies fall into the much broader category of noise trader studies, we
confined ourselves to studies that explicitly focus on dynamic hedging. Be-
fore going into detail, chapter 2 characterizes similarities between the models
proposed in the surveyed articles. Three common model features are identi-
fied and discussed. This order helps us to concentrate on results rather than
on model features when discussing the articles themselves. In the actual
survey, we distinguish between articles that assume complete and symmetric
information and those that assume incomplete and / or asymmetric infor-
mation. The exposition in chapter 2 is mostly informal even though selected
results are stated formally when appropriate. The chapter offers a brief look
towards application as well.

While preparing this thesis, we tried to keep it as self-contained as possi-
ble. Therefore, in part II of the thesis we introduce fundamental methods of
financial economics first and develop a general model framework in a second
step. All subsequent analyses are then embedded in this general framework.
The same holds true for a number of basic definitions and central results
which are given in a form applicable to the general framework. The defi-
nitions and results can then be securely applied in the specialized settings
since they are stated for the general case. This approach prevents us from re-
peating definitions and results (or from simply omitting them as an ’efficient’
alternative).

Chapter 3 of part II reviews selected aspects of modelling uncertainty
in a financial markets context. It starts by introducing several probabilistic
concepts (e.g., probability space, stochastic process, martingale process) that
are capable of capturing basic notions of uncertainty in a financial market.
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The main outcome here is a formal model of an economy with uncertainty.
The chapter then proceeds with an examination of decision making under
conditions of uncertainty. Here, we sketch out the (objective) expected utility
approach as well as define common measures of risk aversion. The chapter is
rather short and to the point but references are given that can be consulted
as necessary.

The basic concepts of chapter 3 are utilized in chapter 4 to develop a
general model for a financial market. The main ingredients of this market
model are an economy with uncertainty, a time horizon for the economy to
exist, a set of securities traded in the financial market and finally a ’set’ of
agents populating the economy and interacting with each other in the mar-
ket. The formulation of the market model is general enough to incorporate a
great variety of other models [e.g., the CoX, R0oss, and RUBINSTEIN (1979)
model]. Within this general framework, there is a discussion of the martin-
gale approach to finance. In this respect, chapter 4 sets out basic martingale
methods and states powerful results for tackling various problems in financial
economics. The chapter culminates in what is called the Fundamental The-
orem of Asset Pricing. This theorem postulates the equivalence between the
absence of arbitrage, the existence of a certain probability measure, the exis-
tence of a (linear) price system for contingent claims and finally the existence
of a solution to the problem of an expected utility maximizing agent. Instead
of giving proofs for single results, we decided to give detailed references and
to include a number of examples to illustrate the application of the results.
Throughout chapter 4 we impose the standard assumptions.

Having laid sound theoretical foundations in part II, part III focuses on
their application to three different economic settings. Chapter 5 investigates
the binomial model as originated by Cox, Ross, and RUBINSTEIN (1979).
The model is treated as a special case of the general model presented in chap-
ter 4. The standard assumptions, and notably those of perfectly liquid and
complete markets, remain in force there. After some preliminary economic
considerations, the binomial pricing formula is reproduced. We then briefly
contrast the approach of Cox, Ross, and RUBINSTEIN (1979) with the one
of BLACK and SCHOLES (1973). Our objective in doing this is to introduce a
tool that enables appealing graphic illustrations of results derived later in the
chapter. The emphasis in chapter 5 lies on the characterization of dynamic
hedging strategies in the Cox / Ross / RUBINSTEIN model. In particular,
we show that dynamic hedging strategies for arbitrary contingent claims with
convex payoffs generate positive feedback. To our knowledge, the proof of
this result which mostly relies on martingale techniques seems to be new.
Utilizing the BLACK / SCHOLES formula, we provide illuminating graphic
examples for the general positive feedback result. Considering the analysis of
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dynamic hedging, chapter 5 sets the stage since it explores dynamic hedging
in a setting characterized by the standard assumptions.

After all, the remaining two chapters of part III, namely chapters 6 and
7, contain an analysis of dynamic hedging in imperfectly liquid markets.
The models proposed therein are characterized by the fact that we drop the
assumptions of perfectly liquid and complete markets. Since chapters 6 and 7
are structured along similar lines, we will discuss them jointly in the following
text.

In contingent claim pricing models relying on the standard assumptions,
price processes of securities are assumed to be given exogenously. The main
differentiating feature of the models found in chapters 6 and 7 is that price
processes are derived from general equilibrium reasoning. In other words, the
determination of price processes is endogenized. We are convinced that only
a general equilibrium approach is suited to rigorously analyze the impact of
dynamic hedging on financial markets. A partial equilibrium approach as
the one outlined in section 1.3 is only of limited use when assessing economic
implications of dynamic hedging. DUFFIE and SONNENSCHEIN (1989, 567)
argue in a similar direction, thereby underpinning our choice:

” Although, for certain markets, it is possible to explain how price
responds to smaller parameter changes with partial equilibrium
reasoning, few economists would contend that this method is ad-
equate when economies are disturbed in a major way.”

Our approach to analyzing dynamic hedging in imperfectly liquid mar-
kets is roughly as follows. We consider a general equilibrium model where
we allow a fraction of the whole population to act irrational, which means
in this context that they trade on noise rather than on new information.
Accordingly, the population divides into two groups: noise traders who dy-
namically hedge given contingent claims and rational, expected utility maxi-
mizing agents. We will simply refer to these groups as the hedgers and the
non-hedgers, respectively. In equilibrium, non-hedgers set security prices by
solving their expected utility maximization problem. More precisely, prices
are set such that non-hedgers optimally take security positions that clear the
markets. The basic ideas behind this equilibrium concept have already been
presented in a simple fashion in section 1.3. In summary, the main feature
of our equilibrium approach is that in equilibrium security prices are deter-
mined by two factors: fundamentals and aggregate hedge demand. Standard
equilibrium models typically take into account the first factor only, thereby
carelessly neglecting the importance of the second one.

In chapter 6 as well as chapter 7, the existence and uniqueness of a general
equilibrium is established. Our assumptions about the market models cause
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the market model in chapter 6 to be complete in equilibrium and the market
model in chapter 7 to be incomplete. An analysis of dynamic hedging in a
setting where markets are a priori incomplete is new and represents one of
our main contributions to the existing literature.

Drawing on the existence and uniqueness results, we carry out a compar-
ative statics analysis to assess the impact of dynamic hedging on security
prices and particularly on volatility. Due to market completeness in chapter
6 and market incompleteness in chapter 7, the dynamic hedging strategies
followed by the hedgers necessarily differ in both settings. In chapter 6, care-
fully chosen examples demonstrate that recently published results are not
as robust as one might think. Typically, theoretical studies on the impact
of dynamic hedging focus on volatility because it is widely considered to be
good indicator of market stability. Even though there exists almost over-
whelming (theoretical) evidence that positive feedback trading induced by
dynamic hedging increases volatility and thereby destabilizes markets, this is
not true without further qualification. The examples constructed in chapter
6 show that positive feedback trading by hedgers can also decrease volatility.
Similarly, negative feedback trading may also increase volatility. The expla-
nation we offer is based on arguments regarding the liquidity of the financial
market. It turns out that in such a context the elasticity of the non-hedgers’
demand function is indeed an appropriate measure for market liquidity.

Chapter 7 conducts numerical computations that are intended to give
a flavor of how dynamic hedging perturbs the process of the underlying in
our model. In particular, chapter 7 contains data showing the dependence
of the observed volatility effects on the market weight of hedgers and the
degree of the non-hedgers’ risk aversion. Computations for European put
and call options reveal that the impact of dynamic hedging on volatility is
more amplified the higher the market weight is of hedgers and the higher
the degree is of the non-hedgers’ risk aversion. Comparisons between the
complete markets setting of chapter 6 and the incomplete markets setting of
chapter 7 suggest that the effects in the former setting are stronger.

We conclude with some remarks.

Some notes on notation

Ndenotes the natural numbers {1,2,3,...}, R the real line, R, non-negative
real numbers and R, strictly positive real numbers. If a and b are two real
numbers, we define intervals by,

la,b] ={r e R:a <z <b},
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and,
la,b[={x € R:a <z < b}.

la,b] and [a, b] are accordingly defined. =" means equal by definition. V' is
the universal quantifier and means for all. ’()’ denotes the empty set. ’s.t. is
short for subject to. Whenever possible, probability measures are typeset in
'bold’ (e.g., P or Q), sets are typeset in "blackboard bold’ (e.g., A or T), and
systems of sets, like o—algebras, for instance, are typeset in ’calligraphic’
(e.g., F or M). |E| denotes the number of elements of a finite set E. For a
given set [, the indicator function is defined by,

[ lifacE
1E(“):{ 0ifad¢B -

For a given function f, we sometimes denote the first derivative by f’ and
the second derivative by f”. As common, we define,

Apart from the aforementioned notational conventions, we use fairly stan-
dard notation. However, detailed comments on the notation will be given if
necessary.
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Chapter 2

Related work

2.1 Introduction

Conclusions drawn from market observations that dynamic hedging may in-
crease market volatility and even cause stock market crashes have stimulated
a lot of theoretical studies investigating dynamic hedging.! Such investi-
gations typically take place in a partial or general equilibrium framework,
thereby mimicking imperfectly liquid markets. Two basic approaches can be
identified in this strand of literature. One approach is to focus on technical
properties of dynamic hedging strategies (e.g., positive feedback) and to as-
sess what impact these strategies have on equilibrium prices in a complete
information setting. Considering equilibrium prices instead of exogenously
given prices is equivalent to replacing the assumption of perfectly liquid mar-
kets by the much milder assumption of imperfectly liquid markets. Studies
that fall into this class are the focus of section 2.3.

The other basic approach is to assume that market participants are not
aware of the extent to which dynamic hedging strategies are implemented.
This, in turn, is equivalent to relaxing the assumption of complete informa-
tion and / or symmetric information of standard contingent claim pricing
models. The unawareness of agents regarding dynamic hedging potentially
leads to misinterpretations of observed trading activity. For example, unin-
formed agents may interpret trading activity induced by dynamic hedging
as informed trading and therefore jump on the bandwagon. Furthermore,
incomplete or asymmetric information can cause coordination problems in
providing sufficient liquidity to the market, which may eventually lead to a
further decline in market liquidity. Section 2.4 surveys studies stressing this

!ScHWERT (1990), for instance, is a comprehensive empirical study of volatility-related
issues which is inspired by the stock market crash of October 1987.

39
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information problem.?

Although the scope of the articles surveyed in this chapter and the models
proposed therein are rather diverse, the different models nevertheless share
several basic features. This makes it worthwhile to discuss in advance the
most important ones in section 2.2. Having laid this foundation, the detailed
discussion taking place in sections 2.3 and 2.4 can then concentrate on high-
lighting results. Section 2.5 points to some areas of application while section
2.6 finally summarizes the most important aspects from our point of view.

2.2 Common model features

We can identify three common features in which the models of the surveyed
articles share. First, almost all market models entail two securities: a risky
one, e.g., a stock, and a risk-less one, e.g., a bond. The price processes
are such that they complete markets a priori, i.e., every contingent claim is
attainable via an appropriate trading strategy in the two securities. In par-
ticular, this implies that arbitrary derivative securities can be dynamically
hedged. However, the models differ considerably in respect to the number of
trading possibilities. Some authors assume that there are only finite trading
possibilities, or equivalently, that time is discrete. Others assume that trad-
ing is continuously possible, or equivalently, that time passes continuously.
Whether discrete time or continuous time, the restriction of two securities en-
ables the comparison of the obtained results with those obtained in standard
models like Cox, R0ss, and RUBINSTEIN (1979), in the case of a discrete
time analysis or BLACK and SCHOLES (1973), in the case of a continuous
time analysis.

Second, the authors generally assume that two groups of agents trade
in the security markets: hedgers and non-hedgers.> Sometimes the group
of non-hedgers may again divide into several sub-groups. Non-hedgers are
generally modelled as rational, expected utility maximizing agents. In con-
trast, hedgers implement dynamic hedging programs in order to hedge deriv-
ative securities, whereby their motivation to do so is typically exogenously
given. Two basic approaches are applied to model the trading behavior of

2We should note that it is rather difficult to make a clear distinction between com-
plete and symmetric information models and incomplete and / or asymmetric information
models. However, the grouped articles seem to be sufficiently homogenous in terms of
emphasis.

3The authors almost always use names for the two groups that deviate from those
proposed here. We will nevertheless keep on using the expressions hedgers and non-
hedgers. This will hopefully facilitate to recognize similarities as well as differences in the
single models.



2.3. COMPLETE INFORMATION MODELS 41

the hedgers. One is to postulate that the hedgers act like automata, i.e.,
they only execute a given hedge program. The other is to presume that
the hedgers maximize their expected utility while facing an additional con-
straint. This last method applies well to portfolio insurance. In such a case,
a floor constraint for end of economy wealth is imposed for the hedgers. In-
dependent of the differences in modelling the hedgers, trading by the hedgers
always produces positive feedback in the market, i.e., they buy when prices
climb and sell when prices slip.

Third, and probably the most important common feature, is that the
market of the risky security is imperfectly liquid in the models. As a con-
sequence, large enough trades can influence the price of the risky security,
particularly those for the purpose of hedging. However, the ways of modelling
imperfectly liquid markets are numerous, and in fact spanning a wide range.
On the one hand, for example, some authors propose partial equilibrium
frameworks where the demand of the hedgers and the reaction of the secu-
rity prices to their trades are assumed to follow a certain rule. On the other
hand, some authors consider pure general equilibrium frameworks where the
demand functions of all agents are derived endogenously, and prices are set
such that markets clear.

In light of the above said, we can summarize the different aspects as
follows: Two types of agents, hedgers and non-hedgers, interact in a priori
complete but imperfectly liquid securities markets in which two securities, a
risky one and a risk-less one, are generally available.

2.3 Complete information models

2.3.1 Brennan and Schwartz (1989)

Inspired by the events surrounding the stock market crash of October 19,
1987, BRENNAN and SCHWARTZ (1989) analyze the impact of portfolio in-
surance on stock market prices. They embed their formal analysis of portfo-
lio insurance in a general equilibrium model where hedgers and non-hedgers
operate in a stock and a bond market. They interpret the stock as the mar-
ket portfolio. The non-hedgers, exhibiting constant relative risk aversion
(CRRA)*, maximize their expected utility of end-of-period consumption in
contrast to the hedgers, who act like automata following a portfolio insurance
strategy. Since they are representative in a certain sense, the non-hedgers

4Throughout this chapter we will frequently encounter theoretical concepts not yet
formally introduced. Most of them - like constant relative risk aversion - will be introduced
in part II. These are circumstances we can hardly avoid.
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set the prices in the economy. The authors assume that all agents are aware
of the implementation of portfolio insurance itself and the extent to which
this takes place.’

Since this assumption implies rather liquid markets, they observe rises in
the volatility of only 1% when the market weight of the hedgers is 5% and the
degree of CRRA of the non-hedgers is 2. For these parameter values, they
calculate an increase of approximately 4.6% for the market risk premium.°
Furthermore, they find that the costs for implementing portfolio insurance
rise with increasing adoption of such strategies, which means that markets
are no longer linear. In linear markets, if the price for a synthetic put is
a > 0 then the price of the put is still a even if the demand for it doubles, for
instance. Instead, the model of BRENNAN and SCHWARTZ (1989) predicts
a price of a + ¢ for the synthetic put, where ¢ > 0, when the demand for
portfolio insurance doubles.

For the general case, BRENNAN and SCHWARTZ (1989) demonstrate that
the market volatility ¢ in the presence of hedgers satisfies,

oS:
Ut(m) :Z_i : 8_77t 0, (2-1)
t
(4)

where 7, is the fundamental state variable, ¢ denotes time, S; is the price of
the market portfolio in the presence of hedgers (in terms of the numeraire)
and o* is the reference or input volatility.” The term (A) may be interpreted
as the correction term accounting for feedback; it is greater than or equal to
1. In the absence of portfolio insurance, (A) = 1 and 0 = ¢* as desired. As
a result, dynamic hedging destabilizes financial markets.

°”The strategy of the portfolio insurer and his resulting payoff function are known to
all market participants.” BRENNAN and SCHWARTZ (1989, 458).
6The market risk premium is defined as,

Har —Tf

where p,, is the expected rate of return of the market portfolio, ¢ is the risk-less interest
rate. The market price of risk (or the SHARPE ratio) is defined as,

By —7f
oM

?

where o is the volatility of the market portfolio (= standard deviation of its rate of
return). Refer, for example, to JONES (1998, 230-232).
"Compare equations (10), (12) and (14) in BRENNAN and SCHWARTZ (1989, 459-460).
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2.3.2 Donaldson and Uhlig (1993)

The study of DONALDSON and UHLIG (1993) investigates the effect large
hedgers have in comparison to an atomistic group of hedgers who they call
‘portfolio insurers’. In their model allowing trade in a stock and a bond, non-
hedgers having constant absolute risk aversion (CARA) preferences interact
with hedgers following a simple stop-loss trading rule. For this setting, they
show that,

”... the existence of atomistic portfolio insurers increases the
variance of possible equilibrium prices (i.e., volatility) and can
lead to situations in which there are many potential equilibrium
prices for a single set of fundamentals.” DONALDSON and UHLIG
(1993, 1943).

The trading rule the hedgers implement requires them to invest all avail-
able wealth in the stock if the stock price is above a certain level and to
invest it in the bond if the stock price is below that threshold.® Their model
has two different, stable equilibria. They interpret one of them as the unde-
sirable or crash equilibrium. In this context, the hedgers’ trades may cause
a shift from one equilibrium to the other equilibrium. Thus, a crash occurs
according to DONALDSON and UHLIG’S (1993) interpretation.

However, if there are instead large hedge firms who act on behalf of a num-
ber of individuals, the effects on volatility are smoothed since the probability
for a crash decreases. This holds even if these firms attract more agents than
would otherwise follow a hedge strategy. The intuition DONALDSON and
UHLIG (1993) provide for this result is that a large hedge firm that is aware
of its impact on prices may reconsider planned sell orders whereby it may
avoid a market crash. Stated differently, a hedge firm, aware of its market
power, may adjust its trading activity to 'market realities’ so that the stock
price does not jump down from the desired equilibrium to the undesired one.

2.3.3 Jarrow (1994)

In a partial equilibrium model with a stock and a bond, mainly based on JAR-
ROW (1992), JARROW (1994) investigates dynamic hedging by a single large
hedger, i.e., someone whose trades may affect equilibrium prices. The large
hedger implements dynamic hedging strategies for derivatives, in particular
for call options and forwards. The reaction function of the security prices
to the actions of the large hedger are given exogenously. JARROW (1994)

8Section 14.3 of HULL (1997) examines this kind of hedging scheme.
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explains that his assumptions with respect to the reaction function are con-
sistent with several equilibrium models. Small hedgers act as price-takers,
making up for the rest of the population.

In this setting, JARROW (1994) shows that the introduction of option
markets may produce market manipulation strategies, even if they did not
exist before. He defines market manipulation strategies as arbitrage oppor-
tunities for the large hedger. However, applying a condition he calls syn-
chronous markets effectively excludes such strategies. Synchronous markets
mean that it does not matter whether stock holdings of the large hedger
are direct (in the stock) or indirect (via an option on the stock). JARROW
(1994) identifies this condition to be equivalent to the no arbitrage condition
in perfect competition models. With this condition and under a complete in-
formation assumption, he is able to derive an option pricing theory for small
hedgers in a market with a large hedger. JARROW (1994, 252) comments on
his pricing theory:

”This theory has the important result, under a common knowl-
edge assumption, that to a price taker, the standard binomial
model still applies, but with a random volatility.”

But if the small hedgers have only incomplete information regarding the
large hedgers’ actions and the reaction function, they may fail to ”syntheti-
cally construct the call options” (page 258). JARROW (1994, 242) points out
that his pricing theory may help to explain market anomalies as well:

"Due to the reason for the random volatility, this new theory
has the potential to explain some previously puzzling empirical
deviations from the standard Black-Scholes formula.”

Although DONALDSON and UHLIG (1993) and JARROW (1994) both
model large hedgers having the ability to influence the market, the pic-
tures painted of these hedgers differ significantly. Whereas DONALDSON
and UHLIG (1993) suppose that the economy as whole can benefit from large
hedgers being able to control their trades, JARROW (1994) presumes that

large hedgers try to manipulate markets for selfish reasons whenever possi-
ble.

2.3.4 Balduzzi, Bertola, and Foresi (1995)

BALDUZZ1, BERTOLA, and FORESI (1995) also examine an economy in which
non-hedgers and hedgers interact with each other. As common for simi-
lar studies, these agents can trade a stock and a bond. The non-hedgers
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set prices in equilibrium taking into account demand shocks caused by the
hedgers. Though BALDUZZ1, BERTOLA, and FORESI (1995) model an econ-
omy with continuous information flow, they assume that hedgers trade at
discrete points in time only. Mainly relying on numerical examples, they
particularly analyze cases where hedgers trade once. In our view, this is a
major drawback of their study since the notion of dynamic hedging gets lost.

BALDUzz1, BERTOLA, and FOREST (1995) show that positive feedback
shocks cause the stock price volatility to increase. This is in line with results
obtained by other authors. However, they additionally demonstrate that neg-
ative feedback shocks caused by the hedgers have a stabilizing effect; such
shocks decrease the stock price volatility. Moreover, they report that the
observed effects lead to predictability of stock returns which clearly contra-
dicts the EMH. Assuming CRRA preferences for the non-hedgers, BALDUZZI,
BERTOLA, and FORESI (1995) find that the effects of feedback trading are
stronger the higher the non-hedgers’ degree of CRRA is.

2.3.5 Basak (1995)

The focus of BASAK (1995) is similar to the one of BRENNAN and SCHWARTZ
(1989). His analysis takes place in the general equilibrium model of Lucas
(1978), with hedgers and non-hedgers both being expected utility maximiz-
ing agents having CRRA preferences. These agents maximize their expected
utility by trading a large number of available securities. Furthermore, they
consume continuously and not, as in BRENNAN and SCHWARTZ (1989), at the
terminal date only. BASAK (1995) mainly utilizes the martingale representa-
tion methods developed in CoX and HUANG (1989). He introduces portfolio
insurance via an additional constraint for the optimization problem of the
hedgers. This constraint requires that the wealth at a fixed horizon must not
fall under a given floor.” The model of Basak (1995) differs significantly
in one way from similar studies in that he assumes that the hedge horizon
lies before the end of the economy. He thereby allows for discontinuities in
securities prices between the hedge horizon and the economy horizon.
BAsSAK (1995) finds that in his model, portfolio insurance decreases the
volatility of the underlying securities. The rationale he gives is that securities

Y9GROSSMAN and VILA (1988) show that in complete markets such a problem is equiv-
alent to the problem of an expected utility maximizing agent not facing the mentioned
constraint but rather owning an appropriately chosen put option. As is reasonable, the
initial endowment of this agent is accordingly reduced by the price of the put option.

A brief formal account of an approach to modelling hedgers similar to BASAK’S (1995)
will be given in sub-section 2.3.7 where we discuss the model of GROSSMAN and ZHOU
(1996).
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must become more favorable to give the risk-averse agents an incentive to
absorb the additional supply from the hedgers in some states of the world.
In particular, BASAK (1995, 1078) notes:

"In our setup (CRRA preferences), the market price of risk is
unchanged across economies, so the only way to achieve favorable
risky assets is for the volatility of some risky assets (and hence
the market) to decrease. Since the market volatility is decreased,
for the market price of risk to remain unchanged the market risk
premium must also decrease.”

Neither does intuition support the result that positive feedback trading
decreases volatility and market price of risk, nor does any other study we
know of confirm these results.

2.3.6 Frey and Stremme (1995)

FREY and STREMME (1995) work in an overlapping generations model with
trading opportunities in a stock and a bond. The model economy is popu-
lated by two types of agents: non-hedgers, today maximizing their expected
utility of consumption tomorrow, and hedgers, today hedging a contingent
claim payable tomorrow. The authors’ focus lies on general dynamic hedging
strategies exhibiting the positive feedback characteristic rather than on spe-
cific types of positive feedback strategies. Working in continuous time, they
derive a stochastic differential equation the equilibrium stock price process
must satisfy when hedgers are present. This equation boils down to the
standard equation of BLACK and SCHOLES (1973) when the hedgers’ mar-
ket weight is zero, indicating consistency with the standard theory.

In contrast to a pure general equilibrium approach, they postulate cer-
tain characteristics the demand functions of the agents should satisfy. For
example, stock demand functions, derived for the special case where the
non-hedgers have CRRA preferences, have the postulated properties. For
this special case they prove existence and uniqueness of a general equilib-
rium. They derive the following expression for the market volatility ¢ in the
economy where hedgers with market weight o € [0, 1] are active,

l1—-a- ¢t(5’t> O'*
1 — Q- ¢t(5t) —a- S a(pt(st)l
(B)

(2.2)

Here, ¢t denotes time, S; the stock price at t, ¢,(S;) is the number of shares
of the stock held at ¢ to dynamically hedge contingent claims and o* is the
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reference or input volatility.! One sees that for a = 0, ¢ = o*. Moreover, o
is increasing in «, i.e., the more hedgers are active the higher is the volatility
in the economy. In other words, the volatility correction term (B) satisfies
(B) > 1, as does the corresponding term (A) [see equation (2.1)] in the model
of BRENNAN and SCHWARTZ (1989).

FREY and STREMME (1995) elaborate that even if in this environment
hedging strategies perfectly replicating a derivative security fail to exist, the
BLACK / SCHOLES-methodology may still be applied. The adjustment to be
made is in respect to the input volatility. The BLACK / SCHOLES volatility
has to be replaced by a so-called super-volatility, as defined on page 16 in
FREY and STREMME (1995), that leads to a super-replication of the deriva-
tive.!! They prove the existence of a unique super-volatility in their setting.

Using the same parameter values as BRENNAN and SCHWARTZ (1989),
FREY and STREMME (1995) find that their model predicts stronger effects
of dynamic hedging on market volatility. For a market weight of hedgers of
5% and a degree of CRRA of 4, they get from numerical simulations that
the market volatility rises by 9%, while it rises by only 2% in the BRENNAN
and SCHWARTZ (1989) model for these parameter values. They attribute
this to the different modelling of the non-hedgers. Contrary to BRENNAN
and SCHWARTZ (1989) where non-hedgers consume at the terminal date only,
non-hedgers here consume continuously, thereby taking ”... changes in cur-
rent prices as signals for future price movements.” (page 3). FREY and
STREMME (1995, 18) comment on their findings:

”A comparison with the analysis of Brennan and Schwartz re-
vealed the importance of agents’ expectations in determining mar-
ket liquidity and hence the amplitude of the feedback effect on
volatility.”

2.3.7 Grossman and Zhou (1996)

The study of GROSSMAN and ZHOU (1996) is closely related to those of
BRENNAN and SCHWARTZ (1989) and BAaSAK (1995) since it also analyzes
portfolio insurance as a special case of dynamic hedging. Similar to BASAK
(1995), GROSSMAN and ZHOU (1996) model portfolio insurance by an ad-
ditional (floor) constraint that one group of the agents, the hedgers, faces.

10Compare equation (3.15) in FREY and STREMME (1995, 12).

" Roughly speaking, a trading strategy ¢ that super-replicates a contingent claim is a
trading strategy whose payoff V(¢) dominates the contingent claim’s payoff A at maturity,
V(¢) > A. In contrast, for a trading strategy that replicates the contingent claim V(¢) =
A holds. In chapter 4, super-replication is introduced in a rigorous manner.
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All agents of their general equilibrium model only consume at the end of the
economy, which is in accordance with the modelling of the non-hedgers in
BRENNAN and SCHWARTZ (1989). In the model, agents can trade a stock,
interpreted as the market portfolio, as well as a bond. In the analysis of the
agents’ problems, GROSSMAN and ZHOU (1996) mainly utilize martingale
methods. Given an initial endowment of Wy, the problem of a non-hedger is
to,

max Eg[v(1Wr)] (2:3)
s.t. Wr = ¢+ ér - ny (2.4)
AW, = ¢;dS}, (2.5)

where T is the economy’s terminal date, Ef denotes expectation at time
0 under the given probability measure P, v(-) is the utility function of the
risk-averse non-hedger and Wy is his / her time T wealth. ¢9 denotes the
number of units of the bond, serving as the numeraire, held at 7' ¢; , ¢ € [0, T},
denotes the number of shares of the stock held at time ¢ and 7, the liquidating
dividend of the stock. Finally, S} is the price of the stock prior to T} i.e., for
t € [0,T]. A hedger faces the additional constraint,

WT Z g - WQ, (26)

with € € [0, 1]. In other words, a hedger has to assure that his / her terminal
date wealth W does not fall under a given floor expressed as a fraction of
his / her initial wealth ;. For the hedgers, v(-) may be replaced in (2.3) by
another utility function. The application of martingale methods transforms
problem (2.3)-(2.5) into the static problem,

max E{ [v(Wr)]

Wr

s.t. EOP[LWT] = W(],

where L is the state price density with respect to a P—equivalent martingale
measure.

For two specific examples, GROSSMAN and ZHOU (1996) find that the
presence of dynamic hedging increases both the volatility and the market
price of risk. The examples differ only in the specification of the hedgers’
utility function. The first example assumes log utility, implying CRRA of 1
for both groups of agents, whereas in the second example the hedgers have

L2Refer, for instance, to section 3.4 of BAXTER and RENNIE (1996). In part II of the
thesis, we introduce these concepts for a discrete time setting.
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CRRA of % In these parameterized settings, the aforementioned effects are
stronger when bad news arrives and weaker when good news arrives. The
intuition behind this is that when market prices slump, thereby approaching
the hedgers’ target floor, hedgers must sell shares of the stock in order to sat-
isfy constraint (2.6). This additional selling pressure causes prices to further
decline, therefore volatility increases. To give the non-hedgers an incentive
to absorb the additional stock supply by the hedgers, the attractiveness of
the stock must rise, therefore the market price of risk increases. As an aside,
GROSSMAN and ZHOU (1996) also show that there is a positive correlation
between trading volume and price volatility.

2.3.8 Sircar and Papanicolaou (1997)

Considering the general equilibrium model of FREY and STREMME (1995),
SIRCAR and PAPANICOLAOU (1997) ask the question of how the generalized
BLACK / SCHOLES model® must be adapted to account for feedback from
dynamic hedging of call options. They derive for the equilibrium price process
the following partial stochastic differential equation,

dSy = py(Se,my)dt+ ke(Se,my) o7 (n,)dw, (2.7)
(@)

where S; is the stock price at time ¢, u(+) is the drift term, 7, is the (stochastic)
income of the non-hedgers at ¢, k;(-) respectively (C') is the correction term
for the feedback from dynamic hedging, o7 (+) is the income process’ volatility
and wy is a standard BROWNIAN motion.'* In the absence of hedging activity
with considerable influence on the market, the correction term (C') vanishes,
i.e., it equals 1, so that the model boils down to the generalized BLACK /
SCHOLES model. A fact we have already observed twice; in the model of
BRENNAN and SCHWARTZ (1989) and in the model of FREY and STREMME
(1995) [see equations (2.1) and (2.2)]. Here, however, this reduction depends
on the crucial assumption that the non-hedgers are endowed with a stock

13They ”... use the word generalized in the sense that the underlying asset price is
a general ITO process rather than the specific case of geometric Brownian Motion in
the classical Black-Scholes derivation.” SIRCAR and PAPANICOLAOU (1997, 5). Refer
to chapter 3 of BAXTER and RENNIE (1996) for an introductory overview of stochastic
processes in continuous time, such as BROWNIAN motion, and the necessary stochastic
calculus tools to handle them. A more comprehensive treatment of this and related issues
(e.g., stochastic integration) is found in KARATZAS and SHREVE (1988).

1 Compare equations (2.9), (2.10) and (2.11) in STRCAR and PAPANICOLAOU (1997, 8).
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demand function of the functional form,

s =1 (%),

oBS

where S is the stock price, 7 the income, v = = with o83 being the BLACK
/ SCHOLES volatility and o* being the income volatility, and where f is
an arbitrary smooth, increasing function. The reason for this requirement
with respect to the demand function of the non-hedgers stems from the fact
that the BLACK / SCHOLES setting is compatible with a general equilibrium
framework under rather restrictive assumptions only. BIick (1987) studies
this topic.

For a market weight of hedgers of 5%, SIRCAR and PAPANICOLAOU (1997)
report that the observed volatility in a specific example may rise by up to
12% relative to the benchmark where the hedgers market weight is negligi-
ble. Numerical simulations for a set of call options with strike prices being
evenly distributed reveal that volatility is highest at the mean of strike prices,
amounting there to an 8% increase relative to the benchmark.

2.4 Incomplete information models

KLEIDON (1995) surveys the three articles treated in this section as well.
In his survey article about stock market crashes, KLEIDON focuses on the
explanatory power of the different models with respect to the stock market
crash of 1987. As we will see below, incomplete information models seem
well-suited for explaining such extraordinary events as opposed to complete
information models.

2.4.1 Grossman (1988)

While its publication date lies after the crash of October 1987, an early ver-
sion of GROSSMAN’S (1988) article was written before the crash. Neverthe-
less, GROSSMAN (1988), acknowledging the importance of dynamic hedging
strategies in the determination of market prices, explores how the implemen-
tation of dynamic hedging programs may influence the market’s volatility. In
addition, he examines how price jumps (such as crashes) may be explained by
the use of these programs while the emphasis, however, lies on the volatility
issue. In his article, he stresses the central idea that real derivative securities
and their synthetic counterparts are imperfect substitutes:

”In particular, the replacement of a real security by synthetic
strategies may in itself cause enough uncertainty about the price
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volatility of the underlying security that the real security is no
longer redundant.” GROSSMAN (1988, 276).

GROSSMAN (1988) argues that a real, exchange-traded security carries
information that would not be available if one replaces the security by a dy-
namic hedging strategy. An example he cites, is that the price of a put option
reflects the sentiments of investors about future market developments. If the
majority of market participants expect price declines, put prices should be
high reflecting a high protection demand. Otherwise, he argues, if market
participants are rather optimistic, put prices should be low because of weak
demand. This information content gets lost when market participants im-
plement dynamic strategies, such as portfolio insurance, rather than buying
real options.

GROSSMAN (1988) embeds his analysis in an informal three date model
where three groups of agents are active: hedgers, liquidity providers, and
buy-and-hold managers. One major shortcoming of GROSSMAN’S analysis
is that he, since arguing informally, has to assume that the implementation
of dynamic hedging strategies increases the market volatility. He further
assumes that this effect is stronger when the liquidity providers, because of
a lack of information, do not commit enough capital in the market to absorb
the hedge-induced trades. Moreover, GROSSMAN (1998, 297) infers that,

”[w]ith incomplete information about portfolio insurance usage,
[the fraction of hedgers] f should be modeled as a stochastic
process. ... The consequent stochastic volatility will make put
options no longer redundant.”

2.4.2 Genotte and Leland (1990)

The aim of the study of GENOTTE and LELAND (1990) is to answer the
following questions relating to the 1987 stock market crash:

”1) How can relatively small amounts of hedging drive down
prices significantly?

2) Why didn’t stock prices rebound the moment such selling pres-
sure stopped?” GENOTTE and LELAND (1990, 1000).

Whereas the majority of the aforementioned studies are mainly concerned
with volatility alone, GENOTTE and LELAND (1990) explicitly seek to explain
why the crash of October 1987 could occur provided dynamic hedging was
its primary cause.
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Four types of agents populate the model economy GENOTTE and LELAND
(1990) consider: hedgers, uninformed traders, supply-informed traders and
price-informed traders. All but the hedgers exhibit CARA preferences. The
signals the informed traders receive are imperfect or even poor. GENOTTE
and LELAND (1990, 1008) note that ”[t|he key to the stability of markets is
the extent to which hedging strategies are observed by investors.” The ratio-
nale they give is that ”[t]he relative proportion of investors who are informed
versus uninformed is a key determinant of market liquidity.” (page 1002).
The former aspect relates to incomplete information in the model economy
while the latter aspect concerns an asymmetric information problem.

Using examples, they analyze three cases: one where the hedge-induced
supply is fully anticipated, one where it is partially observed and one where
it is totally unobserved. Since the first two cases both lead to one stable
equilibrium only, crashes can only occur in the third case which includes two
stable equilibria. In this case of particular interest, the market may crash
because of hedge-induced selling if the stock price reaches a certain threshold.
After the crash, when the market is in the "low-price’ equilibrium, the market
remains there if it is stable enough, which is in fact the case in their model.
This can explain why it took stock markets many months to recover after
the 1987 crash. Furthermore, the model of GENOTTE and LELAND (1990)
predicts that the volatility in the new equilibrium is lower than before the
crash, which is a result that is supported by empirical observations as well.!®

2.4.3 Jacklin, Kleidon, and Pfleiderer (1992)

In similar vein, JACKLIN, KLEIDON, and PFLEIDERER (1992) also seek to
explain the stock market crash of October 1987. Notably, their analytical
focus differs from those of GROSSMAN (1988) or GENOTTE and LELAND
(1990):

... we focus not on the potential liquidity problems caused by

coordinated selling - which we acknowledge as real - but rather
on the inferential problem caused prior to such selling. ... We are
particularly interested in the problem caused for those investors
who rationally condition their demand on the demands of others
because they are imperfectly informed.” JACKLIN, KLEIDON,
and PFLEIDERER (1992, 36).

In their analysis, JACKLIN, KLEIDON, and PFLEIDERER (1992) mainly
rely on numerical simulations for a model in which three groups of agents

5ScHWERT (1990, 77) writes: ”Stock volatility rose dramatically during and after the
1987 crash, but it returned to lower, normal levels unusually quickly.”
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(hedgers, informed traders, and liquidity traders) interact with a market
maker making markets in a single stock. They demonstrate that the under-
estimation of dynamic hedging in their model leads to greater prices than
implied by fundamentals. Market participants who learn over time about
dynamic hedging usage gradually reevaluate their previous inferences. When
the extent of dynamic hedge programs is fully revealed, prices may abruptly
fall, hence a market crash occurs.

This concludes the actual survey. The next section is concerned with
possible areas of application for the models just discussed.

2.5 A brief look towards application

In this section, we briefly discuss potential areas of application of the models
proposed in the surveyed articles. In principle, three main areas can be dis-
tinguished. First, these models may help to explain empirical observations.
Second, they can help to address regulatory issues. Third and finally, they
may help to improve existing financial models with regard to their applica-
bility to real world problems.

All but one of the studies surveyed conclude that dynamic hedging strate-
gies increase market volatility. Empirical evidence that there is indeed ex-
cess volatility in markets is cited in section 1.2. A more general conclusion
that can be drawn from this result is that market volatility is dependent on
the fraction of the market portfolio subject to dynamic hedging. Naturally
assuming that this fraction is uncertain or stochastic, these studies also de-
liver an explanation for why market volatility is rather non-deterministic,
i.e., uncertain or stochastic, than deterministic as assumed in standard mod-
els. Uncertain or stochastic volatility in turn generally implies that markets
are incomplete. Moreover, models that incorporate feedback effects from
dynamic hedging may also deepen our understanding of certain empirical
observations called market anomalies. GROSSMAN and ZHOU (1996), for in-
stance, show that their model is consistent with the volatility smile.! They
note:

... the existence of the volatility smile in the options market

is evidence that the options market has priced in the equilib-

16 The volatility smile refers to the phenomenon that option prices of options on the same
underlying but with different strike prices imply different volatilities for the underlying. A
graph of the implied volatilities against the strikes often looks like a ’smile’ which is where
the name comes from. Of course, the volatility smile is inconsistent with the BLACK /
SCHOLES theory. See section 19.7 in HuLL (1997).
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rium implications of portfolio insurance.” GROSSMAN and ZHOU
(1996, 1398)

Having analyzed what impact dynamic hedging has on market prices,
the next step is to ask what the consequences are for market participants.
However, GROSSMAN (1988, 293) warns:

”..., even if dynamic hedging strategies have contributed (or will
contribute as their importance grows) to stock price volatility, it
does not follow that this is, in net, socially harmful or worthy of
regulation. To say that the use of a strategy imposes costs hardly
implies that these costs outweigh their benefits.”

A first step could therefore be to assess welfare implications of dynamic
hedging. A natural next step would then be to ask whether dynamic hedging
is worthy of regulation or not. Also a possible field of application is the esti-
mation of dynamic hedging activity in securities markets which, for example,
may be of interest to a regulatory authority. To conduct such an estimation,
one has to invert the procedure of assessing the impact of dynamic hedging
on the market. The question then is: Given an observed market volatility,
what does this imply for the market weight of hedgers?

Another important area of application is the pricing and hedging of deriv-
atives in imperfectly liquid markets. FREY (1996) derives a pricing and
thereby a hedging theory for a large hedger in such markets. JARROW (1994)
considers the opposite side: small hedgers facing a large hedger. As already
mentioned above, JARROW (1994) proves that the binomial option pricing
model still applies for small hedgers under a common knowledge assumption
but with stochastic, or more exactly, level-dependent volatility. Similarly,
STRCAR and PAPANICOLAOU (1997) derive a pricing theory for small hedgers
in the presence of feedback. In a sense, their model is a generalization of the
BLACK / SCHOLES / MERTON theory to imperfectly liquid markets. Due to
recent, successes of stochastic volatility models in explaining alleged market
anomalies and overcoming some known shortcomings of the standard models,
such models become increasingly popular in the derivatives industry. That
is why STRCAR and PAPANICOLAOU (1997) suggest that considering feed-
back effects from dynamic hedging in these models can further enhance their
applicability.

2.6 Summary

As it becomes evident in the studies surveyed in this chapter, no matter
whether information is complete or incomplete, the qualitative predictions
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concerning the impact of dynamic hedging on financial markets are generally
the same. An often reported result is, for example, the increase in the market
volatility, or as it may be interpreted, a destabilization of financial markets.
However, the effects predicted are intensified when information is incomplete,
typically due to a further decrease in market liquidity. That dynamic hedging
increases market volatilities comes from the positive feedback it poses on the
markets: price rises are amplified by additional buy orders from hedgers, price
falls are accelerated by additional sell orders.

A puzzle that remains unresolved is how positive feedback hedging can
decrease volatility as found in BASAK (1995). Moreover, so far it is not clear
what impact dynamic hedging has when markets are incomplete a priori. In
such markets, hedge strategies are no longer uniquely determined. This sug-
gests that dynamic hedging in such a context may possibly produce different
results compared to those obtained in complete markets. We will tackle both
points in part III of the thesis.
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This part of the thesis is intended to provide a review of three different
topics in financial economics: modelling uncertainty, decision making under
uncertainty and the martingale approach. If done rigorously, each of these
topics deserves a book-length treatment. For this reason, we cannot and do
not even attempt to be comprehensive in exploring these areas of financial
economics. We can, however, take a glance at some basic methods, helpful
techniques and central results which will be applied in part III of the thesis.
This helps to keep the thesis as self-contained as possible.

Our guiding principle for the selection of the topics covered in this part
was the importance of the different economic theories for the applications
in part III. By all means, the theory of decision making under uncertainty
and the martingale approach are central there. Basic principles in modelling
uncertainty are of course necessary prerequisites for the other two fields. At
the end of part II, we will be equipped with a basic market model suited to
include as special cases a great variety of common market models. Further-
more, we will have available a tool-set we can use to attack diverse problems
typically arising in situations under uncertainty.

The exposition in chapters 3 (uncertainty and decision making under un-
certainty) and 4 (martingale approach) is short and to the point. Results are
stated without proof but detailed references are given in each case. Instead
of giving proofs we decided to include several examples that illustrate the
application of central results. Our hope is that the examples are a better
guide to the ideas behind the different results than the corresponding proofs,
which are rather technical in general.
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Chapter 3

Uncertainty - A quick review

3.1 Introduction

Financial economics is mainly concerned with decisions under conditions of
uncertainty. Without uncertainty, the field would presumably not exist at
all. Therefore, in this short chapter we develop a model for an economy
with uncertainty and briefly review one possible approach to decision making
under uncertainty.

The model introduced in section 3.2 builds the basis for all subsequent
analyses. Frankly, the concepts introduced there are standard probabilistic
concepts which we interpret from an economic point of view. A central con-
cept tackled in this section is the concept of a martingale. In a sense, this
represents the prelude to the next chapter where we explore the martingale
approach to financial economics. Since the body of literature that deals with
the topics presented in section 3.2 is extremely large, we only give selected
references. BAUER (1990) is rather comprehensive with respect to the topics
covered there. He has a strong focus on theoretical aspects only. In addi-
tion, the book by BROCK and MALLIARIS (1982) provides applications to
economics and finance. It is, however, not as comprehensive in theoretical
terms as BAUER (1990). Chapter 1 of KARATZAS and SHREVE (1988) con-
tains a very compact presentation of the relevant material. Chapter 3 of
PLISKA (1997) may also be consulted. The strength of his exposition is that
economic considerations motivate the use of mathematical concepts. More-
over, the measure theory book of ELSTRODT (1996) can supplement each of
these texts.

Section 3.3 contains an analysis of decision making under uncertainty. In
particular, it discusses some aspects of the objective expected utility theory.
The literature on this topic is very large as well, so we again provide only a
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small selection of references. Since section 3.3 essentially summarizes several
basic ideas portrayed in chapter 1 of EICHBERGER and HARPER (1997),
their book can serve as the guiding reference. For further reference, the
survey articles by KARNI and SCHMEIDLER (1991) and HAMMOND (1999),
both containing long lists of additional references, may be consulted.

3.2 Modelling uncertainty

In this section, we develop a mathematical model that can capture the notions
of risk and uncertainty in financial markets. We consider an economy over
a fixed time interval [0, N] C R,. N is called the terminal date where we
assume N € N. At date 0 there is uncertainty about the true state of the
economy at the terminal date N. The set of possible states, however, is
known. The set of all possible states w is denoted () and called the state
space. Subsets of ) are called events. The family of sets that forms the set
of observable events is a o—algebra in €.

Definition 1 A family F of sets is a c—algebra in ) if,

1. QeF,
2. E eF =EeF and

3. By, By, ... € F=UZ BEeF.

[E¢ denotes the complement of the set E. It is easy to see that the power
set p(Q2) of €, i.e., the set of all subsets of €, is the largest c—algebra in
Q2 and that the family {0, Q} is the smallest one. On the set of observable
events F, we can define a probability measure. The probability measure
carries information about the probability of observable events to occur.

Definition 2 Let F be a o-algebra in Q2. A function P : F — [0,1] is a
probability measure if,

1. VE eF : P(E) > 0,
2. P(U2 Ei) = > 2 P(E;) for disjoint sets Eq,Eo,... € F and

3. P(Q) =1.
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Two probability measures, P and Q, defined on a g-algebra F are equiv-
alent if they agree on the same null-sets,

P(E) =0 < Q(E) =0,

where E €F. A collection (2, F,P) of a state space €2, a set of observable
events F, where F is a o—algebra, and a probability measure P defined on
F is called a probability space.!

In general, securities traded in financial markets are risky bets since their
future prices are uncertain. In our simple setup, a natural way to model
securities with uncertain future prices is via functions of the economy’s state
at the terminal date. This motivates the introduction of random variables
and random vectors into the model.?

Definition 3 Given a probability space (2, F,P), a random variable S is
a function,
S:Q->Ry,wr— Sw),

that is F—measurable, i.e., for each B €{[a,b[: a,b € R},
S™HE) = {weN: S(w) € E} €F. (3.1)
A function,
S:0Q—-RE w— S(w),

is a random vector if its component functions,
SFQ - Ry, w i S*(w),

fork e {1,..., K}, are F—measurable. A random vector S is F—measurable
if all component functions S* are F—measurable.

It is sometimes convenient to write SeF for ’S is F—measurable’ where
S can be either a random variable or a random vector.

Definition 4 Let a probability space (Q, F,P) be given where S is finite.
The expectation EY[S| of a random variable (or vector) S under a proba-
bility measure P is defined as,

EP[S] =) Pw)- S(w).

The expectation of a random variable is real-valued whereas the expectation
of a random vector is again a vector.

!See section 1 in chapter 1 of BAUER (1990).
%See section 3 in chapter 1 of BAUER (1990).
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Remark 1 With respect to definition 4, it is important to recall that we
have defined random variables as taking only positive values on the real line.
Otherwise we ought to be more careful.

So far we have assumed that at date 0 there is uncertainty with regard
to the state of the economy at the terminal date N. It seems more realistic,
however, to assume that uncertainty resolves gradually over time. As before,
let €2 be the set of all possible states of the economy at date N. Assume now
that new information about the true state of the economy at date N arrives
at dates n € {0,1,..., N}. This concept is general enough for us to interpret
the time interval [n,n+ 1], n < N, between two consecutive dates as a week,
a day, an hour or any other unit of 'real’ time. We have?,

Definition 5 A filtration F is a non-decreasing family of o—algebras in €2,
i.e., F = (Fn)neqo,..,Ny where Fo CFy € ... € Fy_1 C Fy.

We call the collection (2, F,F,P) a filtered probability space. In the
present context, the filtration is a model for the resolution of uncertainty
over time. If an event & C () is in F,,, then it is known at date n whether
the event may happen or not. In other words, if [E is in F,,, one can de-
cide whether the true state w is in £ or not. Hence, F,, can be interpreted
as the information set at date n. In general, we assume that Fy = {0,Q}
and Fy = p(Q). Economically, this translates into 'nothing is known at the
beginning of the economy’ and ’everything is known at the end of the econ-
omy’, respectively. The requirement that the F, be non-decreasing means
that information cannot be lost.

In such a dynamic context, one can generalize the idea of a random vari-
able (vector) straightforwardly to obtain a stochastic (vector) process. This
enables one to model price dynamics of securities as well.

Definition 6 A stochastic (vector) process (Sy)nco,..n} 5 a date-ordered
sequence of random variables (random vectors) S,,n € {0, ..., N}.

Suppose that (Sy)nefo,....ny represents the price process of a security. Since
the price of a security at the terminal date depends on the state of the
economy at this date, it is reasonable to assume that its price at date n
depends on the information F,, available at date n. This gives rise to*,

Definition 7 A stochastic (vector) process (Sp)neqo,...,n} 5 said to be adapted
to a filtration F =(F,)neqo,...ny of Y0 : Sy is F,—measurable.

3See BAUER (1990, 138).
1See BAUER (1990, 138).
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If security price processes are adapted to the filtration, then the economy
is informationally efficient.® In financial models, one can sometimes find
the opposite situation as well: Information is generated by security price
processes. To handle such situations one needs yet another concept?,

Definition 8 1. The o—algebra generated by a random variable (or
vector) S is denoted o(S) and is the smallest o—algebra with respect
to which S is measurable.

2. The oc—algebra generated by a stochastic (vector) process,
(Sn)nefo,...N}
up to date n 1s denoted,
o(S;:ie€{0,...,n}),

and is the smallest o—algebra with respect to which all random variables
(vectors) Sy, i € {0, ...,n}, are measurable.

In light of this definition, a stochastic process (Sy)neo,..,n} generates the
filtration F = (F,,)neqo,.., N3 Where F, = 0(S; : i € {0, ...,n}). Of course, the
stochastic process is adapted to the filtration it generates.

We now turn to martingales. Heuristically, a martingale embodies the
notion of a fair investment. Consider a risk-neutral investor who plans to
invest in a stock.” This investor would call the investment fair if the expected
discounted price of the stock at some future date equals its present price.
The investor would deny buying the stock if the actual price is higher. He
would, however, always agree to buy if the price of the stock is below the
expected discounted price. A stock price process satisfying the condition that
the expected discounted price at any future date equals its price today is a
so-called martingale.

To formally define a martingale, the concept of conditional expectation
is needed. Taking expectations as proposed in definition 4 presumes that
nothing is known about the state of the economy at the terminal date. In
other words, the minimal oc—algebra {0, 2} forms the information set. If
uncertainty is gradually resolved, the information set enlarges over time and

Recall the discussion about efficient markets in section 1.2. The mathematical formu-
lation here corresponds to weak form efficiency. See also section II of FAMA (1970).

6See BROCK and MALLIARIS (1982, 18).

TAn investor is risk-neutral if he / she is indifferent between a sure amount of money
and an investment with an expected (discounted) payoff equal as high. We will give this
a more precise meaning in the next section.
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allows one to take better expectations. Here, better means that expectations
are taken conditional on a relatively enlarged information set. Formally®,

Definition 9 Let a filtered probability space (0, F,F,P) be given. The con-
ditional expectation EF[S] of a random variable (vector) S given informa-
tion JF,, is the unique random variable (vector) that satisfies,

1. EP[9] is F,—measurable and

2. VE €F, : EP[EP[S] - 15] = EP[S - 15].

Remark 2 For notational simplicity, we denote the conditional expectation
by EF[-] instead of EX[-|F,] as often found in the literature.

This eventually enables the definition of a martingale’,

Definition 10 Let a filtered probability space (0, F,F,Q) be given. A F-
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probability measure Q if,

Vn,s > 0: EQ[S,,s] = Sn.

A probability measure Q that makes a stochastic process - defined on
some filtered probability space (2, F,F,P) - a martingale is called a mar-
tingale measure. Whenever Q is P—equivalent, it is called an P—equivalent
martingale measure.

It may become necessary to change from one probability measure to an
equivalent probability measure, say from P to Q. This is where the state
price density can help.

Definition 11 Let a probability space (2, F,P) be given where S is finite.
For a P—equivalent probability measure Q, the state price density L, which
is a random variable, is defined by,

(w)
We@;L(wz{;ﬁm P20

8See BAUER (1990, 117).
9See BAUER (1990, 138-139).
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We conclude this section with a demonstration of how the state price
density may be applied in computing expectations. Let two equivalent prob-
ability measures P and Q, defined on a o—algebra F in a finite state space
Q, be given. It holds that EQ[S] = EF[LS] for a random variable (vector) S
defined on (Q, F, P). Easy manipulations of EQ[S] verify this claim,

EQS] = ) Q) S(w)

pi). Q)
= Y P) L) Sw)
= EP[LS].

3.3 Decision making under uncertainty

A discussion of uncertainty in financial markets is hardly meaningful without
incorporating a decision maker. We therefore take a glance at a common
theory of decision making under uncertainty: the so-called objective expected
utility theory.*’

Decisions in financial markets are inter-temporal, meaning that actions
taken by a decision maker today have consequences at some future date.
In our model world, the today’s purchase of a stock whose payoff at the
terminal date depends on the realized state of the economy is an example for
an inter-temporal decision. Since the state of the economy at the terminal
date is uncertain, an investment in the stock is made under conditions of
uncertainty. The plan is now to embed such decisions into the model of
uncertainty developed in the previous section.

10Tn economic or financial applications, probabilities can be either objective or subjec-
tive. The former means that they are given by nature. The latter means they are assessed
on the basis of individual beliefs. An economy with objective probabilities is sometimes
referred to as an economy with risk, in the other case it is sometimes referred to as an
economy with uncertainty.

Depending on whether there is risk or uncertainty, different theories of decision making
are applicable. A common theory of decision making under risk is the objective expected
utility theory which we briefly sketch in this section. The dominating paradigm in the
other case is the subjective expected utility theory. For instance, KARNI and SCHMEIDLER
(1991) survey both theories.

In accordance with this nomenclature, we consider in this thesis economies with risk
only. Consequently, there is no need to distinguish between risk and uncertainty. We will
therefore use the words risk and uncertainty interchangeably.
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Let a probability space (€2, F,P) be given and let 2 be finite. (2, F,P)
shall describe uncertainty in an economy that extends over the period [0, N],
N € N. Suppose that an agent may choose at date 0 from a fixed set H
of feasible investments. The investment of the agent, i.e., the actual chosen
element of H, determines a state-contingent payoff at date IN. Denote the set
of all payoffs by W C R. Thus, a function f that maps states and investments
into payoffs!!,

f:OxH—-W,

captures the notion of an investment under uncertainty in this context. Yet
this formulation is not very convenient to work with. It is more convenient
to treat state-contingent payoffs directly. The set W of all state-contingent
payoffs is defined by,

W = {(w(w), w(ws), ..., w(wyg)) : w(w;) = f(wi,h),h € H}. (3.2)

In light of (3.2), it is obvious that for an agent deciding over an invest-
ment opportunity A € H is tantamount to deciding over a state-contingent
payoff w € W%, To formalize this idea, let the preferences of the agent be
represented by a preference relation defined on the set W2, Furthermore, let
the preferences of the agent be complete, transitive and continuous.'?> These
preferences can then be represented by a utility function U of the form!?,

U:W? - R. (3.3)

In those cases where the preferences of the agent additionally satisfy a certain
state-independence condition, (3.3) can take the particular form,

U:W? - R,w— EF p(w)] = Y Pw)v(w(w)), (3.4)

weN

where v : W — R.} We call v the utility function of the agent and EF [v(w(w))]
the expected utility of the agent. All agents considered in this thesis have
preferences that are compatible with an expected utility representation as
displayed in (3.4).

Let w,w’ € W®. With the expected utility representation (3.4), the
preferences of an agent translate into the following: The agent,

HRefer to EICHBERGER and HARPER (1997, 8).

12Compare VARIAN (1992, 95).

BSMEHTA (1999) contains several proofs for the existence of utility functions.

H4Refer to appendix B in EICHBERGER and HARPER (1997). See also section 2 of KARNT
and SCHMEIDLER (1991) or sections 2-4 of HAMMOND (1999).
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e prefers w over w’ if,

E” [u(w)] > E” [v(w)],

e strictly prefers w over w' if,

E” [v(w)] > E” [v(w')],

e and is indifferent between w and w’ if,

E” [u(w)] = E [v(w')].

In dynamic settings, expected utility representations of preferences are
possible too. For a given filtered probability space (2, F,F,P), (3.4) be-
comes,

Uy : W? = R, w— EF [u(w)]. (3.5)

In (3.5), we merely replaced the expectation by the conditional expectation
given the information set F,, at date n. Because of the assumption that the
agent only cares about the state-contingent payoff at date IV, this causes no
trouble here. In cases in which the agent is also concerned with payoffs at
dates other than N, one has to be more careful.

It is worth pointing out that agents whose preferences are compatible
with an expected utility representation act dynamically consistent. Roughly
speaking, this means that an expected utility maximizing agent follows his
/ her consumption-investment plan independent of the information gathered
over time. In other words, an optimal plan is not revised by such an agent
even if he receives new information.'®

It can be observed in financial markets that investors significantly differ
with respect to their appetite for risk. In the following, we address the
question of how this appetite for risk can be measured.

Definition 12 Consider an expected utility mazimizing (EUM) agent with
a twice continuously differentiable utility function v : W — R where v'(-) > 0
over the relevant range. We say the agent is risk-neutral if v"(-) = 0, risk-
averse if v"(-) < 0 and risk-loving if v"(-) > 0 over the relevant range.
V'(+) denotes the first derivative of v(-), v"(-) the second derivative.

In the remainder of the thesis, we will only encounter agents that are risk-
averse. Simply put, a risk-averse agent will always choose the ’sure thing’

150n this topic, refer to MACHINA (1989).
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when offered the choice between a fix amount of money and an investment
with an expected (discounted) payoff equally as high. In general, however,
agents exhibit different degrees of risk-aversion. The degree of risk-aversion
is usually measured in two different ways.'6

Definition 13 Consider an EUM agent with a twice continuously differen-
tiable utility function v : W — R where v'(w) > 0. A measure for the agent’s
absolute risk aversion is,

In financial applications, one often finds two particular types of decision
makers. The first type is characterized by constant absolute risk aversion
(CARA), the second type by constant relative risk aversion (CRRA). The
following lemma, with which we conclude this section, proves useful in iden-
tifying these types of decision makers.

Lemma 14 Consider an EUM agent with a twice continuously differentiable
utility function v : W — R where v'(w) > 0.

1. The agent has CARA of degree 6 > 0 if the utility function has the
functional form,

v(w) =1—c.

2. The agent has CRRA of degree v > 0 if the utility function has the
functional form,

v fory#1
= 1=y
v(w) {lnw fory=1

Proof. Applying definition 13 yields the assertions.

16See sub-section 1.4.3 of EICHBERGER and HARPER (1997). Refer also to the seminal
article of PRATT (1964).
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3.4 Summary

In section 3.2, we introduced a basic model for an economy with uncertainty.
The main ingredients were the state space €2, the set of observable events
F and the probability measure P, which together form a probability space
(Q,F,P). We used the concept of a random variable (random vector) to
model uncertain future prices of securities. If uncertainty is gradually re-
solved according to a filtration IF, one works with a filtered probability space
(Q,F,F,P). On such a space, one can define stochastic processes to model
price dynamics of securities. A central concept in this respect is the mar-
tingale, which embodies the notion of a fair investment: The cost of the
investment equals the expectation of its (discounted) payoft.

In section 3.3, we took a brief look at the objective expected utility theory
of decision-making under uncertainty. We stated that under certain condi-
tions, expected utility representations of an agent’s preferences are possible.
Moreover, we introduced two commonly used measures for an agent’s risk
aversion: absolute risk aversion and relative risk aversion.
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Chapter 4

The martingale approach

4.1 Introduction

In the late 1970’s, HARRISON and KREPS (1979) provided the key for the
application of martingale methods to problems in finance. Martingale the-
ory, then already a highly developed theory with many deep results, suddenly
found a completely new area of application. The purpose of this chapter is to
introduce this approach by building on the analysis in the previous chapter.
The chapter culminates in a version of the Fundamental Theorem of Asset
Pricing. The theorem relates arbitrage-freeness, i.e., the absence of oppor-
tunities to make something out of nothing, to the existence of an equivalent
martingale measure. At first sight, a rather surprising result indeed.

The market model and martingale methods we explore in this chapter
are mainly from section 2 of HARRISON and PLISKA (1981). However, some
of the results presented date back to HARRISON and KrREPS (1979). The
chapter as a whole provides the tools which we will frequently apply in part
IIT of the thesis.

The rather concise exposition in this chapter is no substitute for a more
comprehensive treatment of the issues tackled within it. Aside from those
already mentioned, we recommend as reference the survey article by NAIK
(1995) - especially, since this article treats the application of martingale meth-
ods to portfolio choice problems. DYBVIG and R0Ss (1992) present the main
ideas on a rather informal level as well. The article by Cox and HUANG
(1989) represents a milestone in respect to applying the martingale approach
to dynamic consumption problems. HE and PEARSON (1991) generalized
the ideas of Cox and HUANG (1989) to incomplete markets. In addition,
BAXTER and RENNIE (1996), LAMBERTON and LAPEYRE (1996) or PLISKA
(1997) may serve as textbook references, however, the last one is the most
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comprehensive regarding discrete time models.

The chapter is structured along the following lines. Section 4.2 develops
the market model. Section 4.3 states central results of the martingale ap-
proach. Sections 4.4 and 4.5 contain simple examples for some of the results
presented in the preceding section. While the examples in section 4.4 are
more general in nature, those provided in section 4.5 purposely resemble the
equilibrium models we consider in part IIT of the thesis. Finally, a rather
comprehensive summary is found in section 4.6.

4.2 The market model

4.2.1 Primitives

We consider a model of uncertainty as examined in section 3.2. The model
economy lasts for a fixed period [0, N]where N € N and N < oco. A filtered
probability space (€2, p(2),F, P) is fixed where € is the finite state space of
which each element w € () represents one possible state of the economy at
the terminal date N. New information about the true state of the economy
only at date N arrives at dates n € {0,1,..., N}.! Economic activity is also
observed at these dates only. At date N, all economic activity ends. A
time interval |n,n + 1] belongs to each date n < N — 1 where there is no
economic activity. The filtration IF = (F,)neqo,...,.n} satisfies Fy = {@,Q} and
Fn = (). The probability measure P is strictly positive for all w € €, i.e.,
Vw € Q: P(w) > 0. As a consequence, the probability measure P is uniquely
defined up to equivalence.

4.2.2 Securities

There is a set S of K 4 1 securities available in the marketplace whose price
processes are modelled by the vector process,

(Sn)nG{O,...,N}a

where Vn : S, € Rf}fl. The first security, k = 0, is called bond and its price
process is denoted,

(Sg)ne{o,...,N} .

! Typically, models in which information only arrives at certain points in time are
referred to as discrete time models.



4.2. THE MARKET MODEL 75

The bond plays a special role since it is assumed to be risk-less.? Formally,
risk-less means that the random variable,

SPL (- R-H-?w = Sg(w)7

is F,,_1—measurable, i.e., Vn > 1: 5% € F,_ ;. In other words, the actual
value of S? is already known at date n — 1. The remaining K securities are
risky and modelled by a stochastic process each. The price process of the
k—th security, k£ > 1, is denoted,

(Ss)nE{O,...,N}a

and is adapted to the filtration F. Recall that adapted means that the random
variables,
Ss Q- R++7W = Sﬁ(W),

are measurable with respect to F,, i.e., Vk,n : S¥(w) € F,. In other words,
the actual value of S* is not known until date n. Finally, we denote the
discount process by,

(ﬁn)nG{O,...,N}a
and define Vn : 3, = (9)"".

4.2.3 Basic definitions

We will now introduce several central expressions that are closely related to
securities trading.

Definition 15 A portfolio ¢, is a K + 1-dimensional vector, ¢, € REFL,

A portfolio ¢, = (¢°, ..., #%) gives the number ¢* of every security k €
{0, ..., K} held by an agent at date n. For example, ¢701 represents the number
of bonds in the portfolio ¢, at date n. The portfolio ¢, has the natural
interpretation of being the initial endowment of an agent since agents will
be allowed to form a new portfolio for the first time when prices Sy are
announced. This portfolio is then labeled ¢; and has to be held during the

time interval [0, 1].

Definition 16 The market value V,, of a portfolio ¢,, at date n is given by
a function V;, : REFIXRET — R where,

[ ¢,-Sy forn=0
Vn(¢>:{ ¢i.5?1 forne{l,.,N} ~

2This assumption comes along with virtually no real loss of generality but it facilitates
intuition considerably.
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Definition 17 ¢,, is predictable if it is F,_1-measurable, i.e., if Yn > 1 :
¢p € Fno1-

Predictability implies that the portfolio ¢,, is formed at n — 1 and kept
constant during the interval [n — 1,n[. At date n, when prices S,, are an-
nounced, the portfolio has a market value of V,,(¢) = ¢,, - S,. This amount
can then be used, for instance, to form a new portfolio ¢, ;, which is to be
held constant over the interval [n,n + 1[, and so forth.

Definition 18 A trading strategy is a predictable vector process (¢, )neqo,....N}

..........

dictable if Yn > 1: ¢,, is predictable.
Two other processes are directly associated with each trading strategy:

Definition 19 1. The value process (V,(¢))nco,..n} of a trading strat-
egy is a real-valued, F—adapted process where V,,(¢) is given by defini-
tion 16.

.....

valued, F—adapted process where we set Gy = 0 and where G, : RET1 x
RE — R with,

Gn(0) = Z¢i - (Si = Si-1),

forn > 1.

In the analysis to follow, two classes of trading strategies are of particular
interest: self-financing and admissible trading strategies.

Definition 20 A trading strategy is self-financing if and only if
(Vn:1<n<N-1):¢, Sp=0¢p 1S
or equivalently, if and only if,
(Wn:1<n<N-1):Va(@) = Vo(@) + Gal6).

Neither are funds withdrawn nor additional funds invested at dates between
n=1andn=N —1.
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Definition 21 A trading strategy is admassible if it is self-financing and if
its value process (Vo (®))neqo,..ny satisfies Vn : Vi (¢) > 0. T denotes the set
of all admissible trading strategies.

Agents who can only implement admissible trading strategies are not al-
lowed to produce a position of debt. In other words, agents cannot implement
trading strategies that possibly lead to bankruptcy. Moreover, this implies
that they must have non-negative initial endowments.

To conclude this sub-section, assume that markets are perfect and per-
fectly liquid.?

4.2.4 Agents

The population of the economy consists of a set I of many small agents. It
can either I C R, or I C N hold. Agents’ preferences are respectively given
by a preference relation that is strictly increasing, meaning that agents prefer
more to less. The preference relation of each agent ¢ € 1 is defined over the
set of state-contingent consumption payoffs in the space ]R'f‘. Each agent has
strictly positive initial wealth at date 0. The set of feasible state-contingent
consumption payoffs, given the initial wealth of agent i € I, is denoted B;.
We assume that B; C R‘f‘ is closed and convex. Moreover, we assume that
the preferences of the agents allow for expected utility representations as in
(3.4). In summary, the problem of agent i € I is given by,

E{ [v;
max Eq [vi(w)],
where v; : R, — R is the utility function of agent i.* There is perfect com-
petition (or price taking) among agents, as well as complete and symmetric
information.

This completes the description of the market model.

3See section 1.1 on these model assumptions.
4For the results presented in this chapter, we could allow the set I of agents to include
more general types of agents. Refer to NAIK (1995).
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Summary

In summary, one ends up with,
Definition 22 The market model M is a collection of,

e a finite state space €,

e q filtration T,

a strictly positive probability measure P defined on p(2),

a terminal date N € N, N < 00,

® q set,
S= {(Ss)ne{o,...,zv} :ked{0,....,K}},

of K + 1 strictly positive security price processes and,

a set 1 of (small) expected utility mazximizing agents.

We write M = {(Q, p(Q),F,P),N, S, I}.

4.3 Central results

This section’s main objective is to state the Fundamental Theorem of As-
set Pricing. In economic terms, central topics of this section are arbitrage-
freeness, arbitrage-free contingent claim prices and market completeness.

A central problem in financial economics is the determination of fair con-
tingent claim prices. As noted earlier, one can think of contingent claims as
being derivative securities, consumption payoffs or arbitrary claims payable
at N. In order to proceed, however, a formal definition of a contingent claim
is needed.

Definition 23 A contingent claim Ay € R‘f' s a non-negative random
variable,
Ay : Q=R w— Ax(w).

An(w) is the amount payable if state w € Q unfolds.

A natural question that arises is that of the attainability of contingent
claims.
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Definition 24 A contingent claim Ay is attainable if there exists an ad-
missible trading strategy that generates its payoff at maturity, Vy(¢) = An,
and if Ao = Vo(@) is the price or value of the contingent claim at n = 0.
A C ]R'f' denotes the set of attainable contingent claims.

Another question is which contingent claims are super-replicable.

Definition 25 A contingent claim Ay is super-replicable if there exists an
admissible trading strategy that generates a payoff dominating the contingent
claim’s payoff, Vy(¢) > Ay, and if Ag = Vo(¢) are the associated super-
replication costs atn = 0. Such a trading strateqy is said to super-replicate
the contingent claim. A*C ]R‘f‘ denotes the set of super-replicable contingent
claims.

Obviously, the set of attainable contingent claims A is in general a sub-set
of the set of super-replicable contingent claims A*.

Definition 26 A linear price system is a positive linear function 7 : A —
R+ thh,

Va,b € Ry, [ 7(Ay) =0 Ay =0
VAN, Ay €A 7| 7(a-An+b-Ay) =a-7(Ay) +b-T(AY)

P denotes the set of all price systems that are consistent with the market
model M, i.e., where,

(Vr €P and Vo € T) : 7[Vn(9)] = Vo(9).

To further analyze pricing issues, the formal concept of an arbitrage op-
portunity proves useful.

Definition 27 An arbitrage opportunity is a self-financing trading strat-
eqy whose value process satisfies Vo(¢) = 0 and Vi (¢) > 0 with EY [Vy ()] >
0.

It should be clear that a security market where arbitrage opportunities
exist cannot be in equilibrium. An arbitrage opportunity arises, for exam-
ple, if there are two or more different prices for the same contingent claim.
A simple arbitrage strategy would then be to sell the contingent claim at a
high price and to buy it at a lower price, thereby locking in the difference

®Sometimes the definition includes the requirement that the trading strategy be chosen
such that it minimizes the super-replication costs Ayg.
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as a risk-less profit. The profit is risk-less because the payoffs at date N of
one contingent claim long and one contingent claim short perfectly compen-
sate each other. Of course, every agent would try to achieve such a risk-less
profit.> Since agents’ budget sets are unbounded in the presence of arbi-
trage opportunities, markets would inevitably be in disequilibrium. That is
why the absence of arbitrage opportunities is a crucial property of equilib-
rium models. However, from an economic point of view, the assumption of
arbitrage-freeness is rather mild.”

In light of the above considerations, establishing conditions that guaran-
tee the absence of arbitrage opportunities in the market model M is obviously
of great importance, which is what we will do next. To begin with, denote Q
to be the set of all probability measures Q that are equivalent to P and that
make the discounted security price process (ﬁnSn)ne{o,._,, ~} & martingale. At
this point, the main concepts for reproducing some of the central results of
the martingale approach are complete.

Proposition 28 (HARRISON and PLISKA (1981, prop. 2.6)) There is a
one-to-one correspondence in the market model M = {(Q, (), F,P),N, S, I}
between price systems T € P and P—equivalent martingale measures Q €Q
via,

1. 7(Ay) = EQ[8y - An] and
2. Q(E) = 7(S¥1p) . B € p(Q).

Proof. HARRISON and PLiskA (1981, 227). &

Proposition 28 states that there is a one-to-one correspondence between a
completely economic concept, a price system, and a completely probabilistic
concept, a martingale measure. It should be clear that this has important
implications for the market model. The importance is impressively illustrated
by the following theorem.

Theorem 29 (Fundamental Theorem of Asset Pricing) Consider the
market model M = {(2, p(2),F,P),N,S,1}. The following four statements
are equivalent:

1. There are no arbitrage opportunities in the market model M.

2. The set Q of P—equivalent martingale measures is non-empty.

6 Local non-satiation, as defined in VARIAN (1992, 96), is a sufficient condition.
"For a discussion on this and other possible model assumptions (e.g., the law of one
price) refer to section 1.2 of PLISKA (1997).
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3. The set P of consistent linear price systems is non-empty.

4. The expected utility maximization problem of agent i € 1 has a solution.

Proof. The equivalence between 1. and 2. is proven, for instance, in
SCHACHERMAYER (1992). Different approaches to prove this equivalence
are reviewed in DELBAEN (1999). DELBAEN and SCHACHERMAYER (1997)
summarize several results regarding this particular equivalence. The article
by HARRISON and PLISKA (1981, 228-229) contains a proof of the equivalence
between 1., 2. and 3. Finally, NAIK (1995, 36-39) proves the equivalence
between all four statements. The proof of NAIK (1995) even includes more
general types of agents. B

Remark 3 The expression ’Fundamental Theorem of Asset Pricing’ was
originally proposed by DYBVIG and ROss (1992) in an earlier edition of
the New Palgrave Dictionary of Money and Finance.

In part III, Theorem 29 will prove very powerful. Starting with the
economically plausible assumption that a market model is free of arbitrage
opportunities, Theorem 29 guarantees the existence of a solution to the op-
timization problem of an expected utility maximizing agent. It also implies
that there is an equivalent martingale measure. Why this last implication is
so important should become clear in light of the following two results.

Corollary 30 (HARRISON and PriskA (1981, 228)) If the market model
M = {(Q,p(Q),F,P),N,S,I} is arbitrage-free, then there exists a unique
price Ag associated with any contingent claim Ay € A. It satisfies VQ €Q :
Ao = EG[By - An].

For arbitrary dates n € {0, ..., N}, the following result emerges.

Proposition 31 (HARRISON and PLISKA (1981, proposition 2.9.)) For
every Ay € A,
ﬁn ’ Vn(¢) = ES[BN ' AN]7

for all dates n € {0,..., N}, for all trading strategies (¢, )neqo,..ny € T that
generate Ay and for all P—equivalent martingale measures Q €Q.

Proof. HARRISON and PriskA (1981, 230). B

Suppose Theorem 29 applies to the market model M. From corollary
30 and proposition 31, one obtains as the date n price A,, of an attainable
contingent claim Ay,

An =8, BBy - An], (4.1)
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with everything defined as before and particularly, Q € Q. Equation (4.1)
states that the date n price of an attainable contingent claim is simply the
expectation of its discounted payoff under an appropriate probability measure
multiplied by the price of the bond.® This seems remarkably simple. Yet
considerable problems usually arise when one wishes to apply this method
to the real marketplace, i.e., when a specific price has to be computed.

In applications, it is sometimes helpful to have yet another concept avail-
able, namely the martingale basis.

Definition 32 A martingale basis Q° = {QPF, ..., QF} of Q is a finite set
of J probability measures defined on (2, p(Q2)) such that each Q € Q can be
expressed as a linear combination of the Qf.

Remark 4 1. Notice that the Qf’ do not necessarily have to be P—equivalent.

2. The existence of a martingale basis follows from Theorem 3.4.6 in
SCHNEIDER and BARKER (1973) after having observed that Q C R‘ﬂr
where |Q| < oo by assumption.

The advantage of having this concept available becomes obvious with the
following useful result.

Lemma 33 If QF is a martingale basis of Q, then the following equivalence
holds:

VQ e Q: Ay =EQ 3y - An]
SVQF € QP : Ay =EY [By - Ay].

Proof. The lemma, follows from standard results of linear algebra.’ B
A brief discussion of market completeness should conclude this sub-section.

Definition 34 The market model M = {(Q, p(Q),F,P),N,S,I} is com-
plete if it is arbitrage-free and if every contingent claim is attainable, or
equivalently, if A = R'f‘.

In discrete time, a convenient characterization of complete markets is
possible.

$Note that 3, ' = 59,
9For a brief discussion of this lemma and an illustration of its application to optimal
consumption problems refer to PLISKA (1997, 59).
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Proposition 35 (HARRISON and KREPS (1979)) Suppose that the mar-
ket model M = {(Q, p(2),F,P),N,S,1} is arbitrage-free. The market model
M is complete if and only if Q is a singleton.

Proof. HARRISON and KREPS (1979) do not give a formal proof but the ar-
gument is straightforward. In discrete time, the resolution of uncertainty can
generally be represented by so-called event trees.!” If one calculates martin-
gale branch probabilities, one observes that these are unique if markets are
complete. The corresponding equivalent martingale measure is then unique
as well. Hence, Q is a singleton if markets are complete.

The converse statement follows from the observation that if markets are
incomplete then there are always many probability measures contained in Q.
In fact, there are an infinite number of such probability measures in general.
So @@ has to be a singleton for markets to be complete.

For a formal proof refer, for example, to LAMBERTON and LAPEYRE
(1996, 9-10). =

Remark 5 As an aside, we want to demonstrate that, under certain cir-
cumstances, one can interpret martingale probabilities as ARROW security
prices.'t  The defining property of an ARROW security is that it pays off
one unit in a predetermined state and nothing in other states. To make our
argument, assume for the moment that the market model is complete and
that interest rates are zero. Consider an arbitrary ARROW security, say, for
example, the one that pays in state w € §). Given the unique P—equivalent
martingale measure Q, its price AS at date 0, according to proposition 30
must be,

A2 =E[0,..., 1  ,..,0)
w—th element
—Q@) 1

Consequently, for there to be no arbitrage, the price of the chosen ARROW
security must equal the probability under the unique P —equivalent martingale
measure for state w to pertain.

10Event trees are one possible way to graphically represent filtrations. The main feature
of these trees is that every node has a unique predecessor. They should be carefully
distinguished from recombining trees that are sometimes used to illustrate the evolution
of the stock price process in the binomial option pricing model. In recombining trees,
nodes may have more than one predecessor. We will return to this topic in chapter 5 in
the context of the Cox, R0ss, and RUBINSTEIN (1979) model.

1Yet another expression for ARROW security price is state price. The premier ap-
pearence of ARROW securities was in ARROW (1964).
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The examples contained in the two subsequent sections will illustrate
some of the notions presented in this section.

4.4 'Two date examples

This section provides simple examples for two date economies that are in-
tended to illustrate the application of the methods and results as portrayed
in the previous section. The examples include both complete and incomplete
markets settings. Although the examples may seem rather simplistic, the
basic ideas behind the martingale approach and the main differences in ap-
plying it to either complete or incomplete markets settings should become
apparent. The extension to more general settings is straightforward.

All examples in this section are based on an extremely simplified market
model My = {(Q, p(Q),F,P),N = 1,S,T}. S! indicates that there is only
one risky security, in the sequel called stock. Furthermore, in M, the risk-less
interest rate is set equal to zero.

4.4.1 Option pricing in complete markets

Consider the market model M, with a model economy that lasts for the
period [0,1]. Two states of the world are possible at n = 1, Q@ = {u,d},
both of which occur with strictly positive probability, P(u), P(d) > 0. The
following securities payoff structure at n = 1 is exogenously given,

| bond price S stock price S}
state u 1 12
state d 1 8

Assume that the stock trades for 10 at n = 0. With this, the unique
equivalent martingale measure for the stock is easily computed to satisfy
Q(u) = Q(d) = 0.5. We now introduce a call option into the economy, which
is defined by,

Cy: Ry, —» R, S — max{S] —11,0}.

The option has a payoft of 1 if state u unfolds and a payoff of 0 if state d
unfolds. Since the P—equivalent martingale measure is unique, the market
model My is complete with the implication that the option can be repli-
cated by a portfolio consisting of shares of the stock and units of the bond.
Formally, A = Ri. We will demonstrate two different ways of deriving the
arbitrage-free price of the option, namely,

e determining the hedge costs of the option and
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e taking expectations of the option’s state-contingent payoff under the
unique P—equivalent martingale measure.

On the one hand, one can determine the hedge portfolio by considering

the linear system,
o (1 L (12 (1
(1) (3)=0)

;»{ ¢?0+12-¢1}:1
¢pr+8-¢1 =0 "

whose unique solution is (¢?, ¢1) = (—2,0.25). @) denotes the number of
units of the bond and ¢7 the number of shares of the stock contained in the
hedge portfolio. It can be easily verified that the portfolio (¢, #7) has the
same payoff as the option. Correspondingly, the hedge costs are,

Co=—-2-14+0.25-10=0.5.

Alternatively stated, the absence of arbitrage, as implied by the existence of
an P—equivalent martingale measure, enforces a price Cy = 0.5 for the call
option.'?

On the other hand, corollary 30 asserts that the price of the option equals
the expectation of its payoff under any equivalent martingale measure. And
indeed, taking expectations yields the same price for the call option,

Co = EF[C] (4.2)
= EJmax{S! —11,0}]
= 05-1405-0
0.5,

as desired.

Clearly, there is a close connection between both ways of pricing the
option. Just notice that the payoff at date n = 1 of the hedge portfolio
equals the payoff of the option,

= ¢+ ¢l St (4.3)
— 24025 S

12The procedure applied here is known as two state option pricing and was originally
developed in SHARPE (1978). It is a rather special case of the binomial option pricing
model of Cox, R0sS, and RUBINSTEIN (1979). See also the informal discussion in section
1.1.
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Substituting for the payoff C; in (4.2) yields,
Co = EF[¢)+¢1-5]]

= ¢+ 1 EQ[S]] (4.4)
= ¢+ 5 (4.5)
= —240.25-10

— 05

(4.4) follows from the linearity of the expectation while (4.5) follows from
the very definition of the martingale measure.

Remark 6 The call option happens to be an ARROW security in the example
economy since it pays one unit in state u and nothing in state d. Its price
of 0.5 coincides with the martingale probability for state u which is what we
have already pointed out in remark 5 for a more general case.

4.4.2 Option pricing in incomplete markets

This example is essentially an extension of the previous one. Contrary to the
previous setting, there are now three different states possible. It now holds
Q = {u,m,d} in the market model My. Assume P(u),P(m),P(d) > 0.
Economically, this difference has, as we will see, far-reaching implications
provided the set of securities remains unchanged, as it does in our case. The
new payoff structure of the two available securities is,

| bond price S{ stock price S}

state u 1 12
state m 1 10
state d 1 8

In this case, the identification of the P—equivalent martingale measure(s) is
not as simple as before but almost equally straightforward. Recalling the
definition of a martingale, we look for a P—equivalent probability measure

Q such that,
So = EQS1]
= 10=¢qy 12+ qn-10+qs-8.

Fortunately, since we are looking for P—equivalent probability measures, we
have some more information about the probabilities q,,,w € €. Altogether,

Qu- 12+ qn 104+ q4 -8 =10

Qu+Qm+Qd:1
QU7Qmaqu>0
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Straightforward calculations yield the solutions,

Qm:1_2'QU
dd = Qqu )
¢ €10,3]

or equivalently,

Q:{QERLZQ:(M—?/),/)) andpelo,%{}.

Obviously, there are over-countably many probability measures under which
the stock price process becomes a martingale. As a consequence, the mar-
ket model M is now incomplete according to proposition 35. The set of
attainable contingent claims is,

12 1
A=A eR3cAi=v- | 10 |+ | 1 |,/ eRy,
8 1

Because of market incompleteness, A is a proper subset of R3.

Next we want to construct a martingale basis for the purpose of reducing
the number of martingale measures one has to take care of. Candidate prob-
ability measures that suggest themselves are those that correspond to p =0
and p = %, the infimum and the supremum of the range of possible p values,
respectively. In fact,

Q% = (0,1,0) and
1 1
B f— f— f—
QQ - (27072)7

constitute a martingale basis Q®. Given an arbitrary p, the defining property
of a martingale basis can be verified by,

(1-0)-Q7 +0-Q) =Q(p). (4.6)

For any p €]0, 1], (4.6) yields a unique 6. In particular, § = 2 - p.
We are now in a position where we can conveniently price attainable
contingent claims. A call option defined by,

C):Ryy — Ry, S} — max{S] — 5,0},

is attainable via the hedge portfolio (¢Y, ¢}) = (=5,1). Given a n = 0 stock
price of 10, simple calculations deliver a price of Cy = 5 for the call option.
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By pricing the option the martingale way, one obtains,

QB
Co = Eol[cl]
= 0-74+1-54+0-3
f— 57
and,
B
Co = E*[Cy]

1 1
- Z.740-54+-=-3
2 + +2

I
o

By lemma 33 and corollary 30 we can verify that Cy = 5 is indeed the right
price for the option. Option prices obtained by the hedge argument and by
the martingale argument are the same, which should not cause any surprise
by now.

4.4.3 Optimal consumption in complete markets

For this example, consider an expected utility maximizing agent who lives in
the economy as outlined in sub-section 4.4.1, i.e., where the market model M,
is complete. However, we additionally assume that P(u) = % and P(d) = %
holds. The agent derives utility from consumption only at date n = 1. The

agent is endowed with a utility function of the form,

v:Riy = Riw— v(w)

with v(w) = lnw.

w denotes actual consumption at date n = 1. The logarithmic utility function
implies CRRA of 1. At n = 0, the agent maximizes his / her expected utility
over n = 1 consumption. The initial wealth is Wy = 10. Accordingly, the
whole problem is to,

EF[In W 4.7
er%%}?; o [In W] (4.7)
s.t. EQW,] = 4. (4.8)

Because of the strict monotonicity of the utility function v(-), the budget
constraint (4.8) is binding. It states that the agent can choose among those
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consumption payoffs W, that cost Wy. With the respective parameter spec-
ifications, one obtains from problem (4.7) and (4.8),

1 2
— - InW, — - InW;(d
W1(I£%/‘}/<1(d)3 n 1(U)+3 nWi(d)

1 1
As the LAGRANGIAN function'® emerges,

LOVi(w), Wi(d), ) = % o W () + % o W (d)

5y (10— %-Wl(u) - %.Wl(d)) |

The first order conditions, which are both necessary and sufficient in this
special case, are,

_ 1 il
Wi(u) — 3Wi(u) 27 A '_ 0
oL 2 1 L
oWi(d) — 3Wi(d) 2 A=0 (4.9)
|
9 =101 -Wi(u)—1-Wi(d)=0

From the first two,

Substituting for Wi(d) in the budget constraint eventually yields W; =
(Wi(u), Wi(d)) = (%,%) as the optimal solution. The agent has to buy
8—30 units of the bond and to sell short 2 shares of the stock to produce the
optimal payoff, (¢°, ¢1) = (@ —g) The optimal objective value is approxi-

37
mately 2.36.

4.4.4 Optimal consumption in incomplete markets

In this example, we move the agent of the previous example into the economy
described in sub-section 4.4.2. As shown, the market model M, is incomplete
there. Assume that P(u) = P(m) = P(d) = 3. The problem of the agent in
this setting is'4,

max E{ [In W] (4.10)

Wi€eA

13For a version of the Theorem of LAGRANGE refer to SCHINDLER (1997, 203-212).

H4Referring to a discrete time, discrete space setting with incomplete markets, HE and
PEARSON (1991) point out: ”In that setting, the set of feasible consumption bundles can
be defined by budget constraints formed using the extreme points of the closure of the
set of Arrow-Debreu state prices consistent with no arbitrage ...” Combining this insight
with remark 5 explains our particular choice for the martingale basis.
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QB
s.t. EO ! [Wl] = Wo (411)
EX (] = W, (4.12)

The attainable consumption payoffs W; among those the agent is allowed
to choose now have to satisfy two constraints. If they do so, lemma 33
ensures that W, satisfies VQ €Q : E}[W;] = W,. Note that because of v(-)
being strictly monotonic, both constraints (4.11) and (4.12) are binding. The
parameterized problem is,

1
max -
Wi (w), W1 (m), W1 (d) 3

1 1

- (In Wi (u) + In Wi(m) + In Wi (d))

giving rise to the LAGRANGIAN function,

LOW, (), Wi (m), Wi (d), A, Ag) = % (0 Wi () + In Wi (m) + In W3 (d)
A (10 — Wi (m))

- (10 - % Wi(u) — % . Wl(d)) |

The first order conditions are,

( awa/f(u) = 3~I/V11(u) - % ) /\2' =0
avgf(m) = 5w — M ilo
avgf(d) = 3.W11(d) - % A2 =0
2L —10 - Wi(m) =0
| 22 =101 - Wi(u) — % -Wi(d) =0

From these, one can derive the unique optimal solution as being W; =
(Wi (u), Wi(m), Wi(d)) = (10,10,10). The agent seeks complete insurance
in the sense that he / she achieves a state-independent payoff at n = 1. The
agent has to invest all the initial wealth in the bond, (¢?, ¢1) = (10,0), to
accomplish the desired payoff. The optimal objective value is then approxi-
mately 2.3.

4.5 Three date examples

The benefits of applying martingale methods become completely apparent
in dynamic settings only. However, contingent claim pricing is formally the
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same in both static and dynamic settings: The price of the contingent claim
equals the expectation of its (discounted) payoff under all equivalent martin-
gale measures. An investor does not have to be concerned with the number
of periods between today and the maturity date of the contingent claim. His
only task is to compute the expected value(s).

However, since we will draw on martingale techniques several times through-
out part III when analyzing optimal consumption problems (or portfolio
choice problems), we will illustrate this using two examples for a dynamic
setting. The two examples differ in respect to market completeness of the
market model M; = {(Q, p(Q),F,P),N = 2,S' T} on which the examples
are based.

4.5.1 Optimal consumption in complete markets

Consider the market model M; and an expected utility maximizing agent
who lives in the model economy that now lasts for the period [0,2]. New
information about the true state of the economy arrives at dates n € {0, 1, 2}.
At date n = 1, two states of the world are possible, whereas at date n = 2,
four states of the world are possible, Q = {uu,ud,du,dd}. At datesn €
{0,1}, the agent can trade in a stock and a bond which together complete
markets, as we will see. The price process of the stock is given as follows,

| first date ‘ intermediate date ‘ terminal date ‘

Si(uu) =12
SHu) =11

Sa(ud) =10

ST=10

Sa(du) =10
SHd) =9

SI(dd) =8

| n=>0 ‘ n=1 ‘ n =2 ‘

Up- and down-movements happen with probability % and %, respectively,

implying P(uu) = 5, P(ud) = 2,P(du) = 2 and P(dd) = 4. The price of the
bond is normalized to 1 so that the risk-less interest rate equals zero. The
unique P—equivalent martingale measure Q is easily computed to satisfy
Vw e Q: Qw) = i implying completeness of the market model M.

The agent derives utility from consumption at date n = 2 according to
the utility function,

v:Ryy = Rw— v(w)

where v(w) = Inw.
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w denotes actual consumption at date n = 2. The agent maximizes his / her
expected utility over n = 2 consumption so that, given an initial endowment

of the agent of W, = 10, the problem is to,

EP[1n W- 4.13
ng@a o [In 5] (4.13)
s.t. EQ[Wy] = Wy (4.14)

Again the budget constraint (4.14) is binding. It states that the agent can
choose among those state-contingent consumption payoffs W, that are af-
fordable, i.e., that cost W,. With the respective parameter specifications one
obtains from problem (4.13) and (4.14),

1 2

—.] — .1

Wz(uu),Wg(Jﬁ?%z(du),Wz(dd) 9 1 WQ(UU) * 9 1 W2 (Ud)
2 4

1 1 1 1

The notation W(+) is consistent with that of the stock prices. Hence, the
corresponding LAGRANGIAN function is,

,C(WQ(U,’U), WQ(Ud), Wg(du), Wg(dd), )\)
= é - In Wa(uu) + g - In Wy (ud)

+§ 0 Wa(du) + % 0 Wy (dd)

Iy (10 - i W) — i Wy(ud)

1 1

The first order conditions, which are both necessary and sufficient, are ,

(_oc 1 1 2
Wa(uw)  9Wa(uw) 4 A '_ 0
oL _ 2 1 -
Wa(ud) — 9Wa(ud) 4 A=0

oL _ 2 _ 1.y L 0 .
OWa(du) 9-Wa(du) 4
oL _ 4 1 1L 0
OWa(dd) — 9Wa(dd) 4
|
[ 25 =0= (4.14)
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Simple manipulations yield,

%ww::%MMML

Wa(du) = Wsy(ud) and

Substituting for these expressions in the budget constraint eventually gives
Wy = (Wo(uu), Wo(ud), Wa(du), Wy (dd)) = (4.4,8.8,8.8,17.7) as the optimal
solution and 2.42 as the approximate optimal objective value. On this basis,
one derives the optimal trading strategy as follows,

{¢3(U)+¢Q(U) 12=41
¢a(u) + dp(u) - 10 = 8.3
—2.

= (95(u), $(u)) = (31T,

(¢5(u), #3(u)) denotes the optimal portfolio for the time interval [1,2] in

states uu and ud. Accordingly, (¢5(d), ¢3(d)) denotes the optimal portfolio
for the time interval [1, 2] in states du and dd. Moreover, wealth of the agent
at n = 1is (Wy(u), Wi(d)) = (6.6,13.3), where the notation is again in line
with that of the stock prices. And from this emerges,

¢ + ¢y - 1
¢ +d1-9=
= (¢1,¢1) = (43.3,-3.3).

(¢[1), gb}) denotes the optimal portfolio during the time interval [0, 1].
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4.5.2 Optimal consumption in incomplete markets

Consider now the agent of the previous example living in an economy where
he / she faces in the market model M; a stock price process of,

‘ first date | intermediate date | terminal date |

Sy (uu) = 12
StHu) =11 Sy (um) =11
S3(ud) =10
ST=10
S5 (du) =10
SHd) =9 Sa(dm) =9
S1(dd) =8
‘ n=>0 | n=1 | n=2 |

Obviously, the state space has enlarged to Q = {uu,um,ud, du,dm,dd}.
Assume that the probabilities for the three states uu,um and ud to unfold
are respectively %. Assume further that the probabilities for the three other
states are % for du, g for dm and % for dd. From the definition of a martingale,

So = EG[S1]
S10=q, - 11+ (1—q,)-9,
giving unique transition probabilities at date 0 of ¢, = 0.5 = Q(u) and

1—¢q, =05 = Q(d). In contrast, the martingale definition fails to deliver
unique transition probabilities at date n = 1. This can be seen from,

!
St(u) = E[S;]

and,

!
Si(d) = BY[S}]
<z>9:Qdu10+Qdm9+Qdd8

EX[] and EX[] denote conditional expectation taken at the u node and
the d node at n = 1, respectively. Using the same calculation scheme as in
sub-section 4.4.2; one can identify the following solutions,

Qud = Quu
Guu € 10,5,
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and,
qdm = 1-2. qdu,
qdd = Ydu
gau € ]0, 5]

Together this gives us the set of all P—equivalent martingale measures as,

DO | —

Q = {QER(1+:Q= (01 =2-p,p,p,1=2-pp)

1
andp,p'€10,§[}.

The over-countably many probability measures contained in QQ imply by
proposition 35 that the market model M, is now incomplete. The set of
attainable contingent claims is,

( 12 1 0 0
11 1 0 0
10 A T U Lo
A=dapers: 2=V o [P o [TV [TV
0 0 9 1
0 0 8 1
v, V.U, 7 €R

\

Obviously, the set of attainable contingent claims A is a proper subset of RS
as expected.
It can be checked that,

J/

Q° =

o
jlloe)
I
[ o NoNall =)
&
I
O O Ov= Ol
o
Radlve!
I
OR OO OO

= Ol O O O

Vs

forms a martingale basis. To verify this claim, let p and p’ be fixed. The
linear system,

01-QF +05-QF +05-QF +04-QF = Q(p, p),

yields as unique solutions 6; = % —p, 05 =p, 03 = % —p and 04 = p/, proving
that QF is indeed a martingale basis.
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In this context, the problem of the agent is to,

Iax E¢ [In W] (4.15)
st. EX (W] = W, (4.16)
Eg¥ [Wa] = W, (4.17)
EX [W,] = W, (4.18)
B [Wa] = Wo, (4.19)

or more detailed it is to,

P
max Eg [In W)
s.t.Wa(um) = 10
1
- Wa(uu) + 5 Wa(ud) = 10

1

The first order conditions of the corresponding LAGRANGIAN function are,

( or 1 _ 1oy L
OWa(uu) — 9-Wa(uu) 2 2=
oL _ 1 L
MWa(um) — 9-Wa(um) A =0

oL 1 1 L
Walud) — 9Wa(ud) 2 Ay =0
oc 1 1.4y, 1ty
Wo(du) — 9Wa(du) 2 73
oL 3 L
OWa(dm) — 9Wa(dm) Ay =0
oL _ 2 1.y, L 0
Wo(dd) — 9Wa(dd) 2 73
. !
| Vi: g5 = 0= (416)-(4.19)
We obtain,
Wa(uu) = Ws(ud),
Wa(um) = 10,
Wa(dd) = 2-Wsy(du) and
Wg(dm) 10,

from which we deduce with the help of the budget constraints (4.17) and
(4.19) that in optimum Ws(uu) = Wy(um) = Wa(ud) = Ws(dm) = 10,
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Wy(du) = 2 and Wa(dd) = 2, ie., W, = (10,10, 10,2,10,4) . The cor-
responding optimal objective value is 2.32. The different portfolios that
correspond to the trading strategy generating the optimal state-contingent

payoff are determined as,

(¢1,01) = (10,0),
(65(w), ¢3(u)) = (10,0),

(@ oh0) = (10.-7).

where we used the notation of the previous example. The wealth of the agent
at date 1 is (Wi (u), Wi(d)) = (10, 10).

4.6 Summary

In economic terms, the following four findings of section 4.3 seem particularly
important:

1. We saw that there is a direct relationship between price systems and
equivalent martingale measures in the market model M.

2. We also saw that the absence of arbitrage implies that the set of equiva-
lent martingale measures and the set of consistent linear pricing systems
are non-empty and vice versa.

3. Maximization problems of expected utility maximizing agents have so-
lutions if there is no arbitrage, there is an equivalent martingale mea-
sure or there is a consistent linear price system.

4. The market model M is complete, thereby implying that every contin-
gent claim is attainable via an admissible trading strategy, if the set of
equivalent martingale measures is a singleton.

The martingale approach provides useful means with which we can conve-
niently tackle contingent claim pricing and decision making problems. Below
we summarize several aspects of the martingale approach which are impor-
tant in methodical terms. Regarding contingent claim pricing and optimal
consumption problems, section 4.3 and section 4.4 revealed the following:
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1. Contingent claim pricing:

(a)

(b)

In complete markets, the price of an arbitrary contingent claim
is merely the expectation of its state-contingent payoff under the
unique equivalent martingale measure.'®

In incomplete markets, the price of an attainable contingent claim
equals the expectation of its state-contingent payoff under any
equivalent martingale measure. However, in applications it is often
useful to work with a martingale basis instead of the whole set Q,
thereby considerably reducing the number of ’relevant’ martingale
measures.

2. Optimal consumption problems:

(a)

Using martingale methods, the budget constraint of an expected
utility maximizing agent in complete markets says that the ex-
pectation of the state-contingent consumption payoff under the
unique equivalent martingale measure must equal the initial wealth.

In incomplete markets, there are generally more than one budget
constraint. With markets being incomplete, the expectation of the
state-contingent consumption payoff under each equivalent mar-
tingale measures must equal the initial wealth of the agent. Mak-
ing use of a martingale basis, the number of budget constraints
coincides with the (finite) number of elements in the martingale
basis.

In dynamic settings, optimal consumption problems may be transformed
into static ones. The application of martingale methods enables the sep-
aration of the task of identifying the optimal solution, i.e., the optimal
state-contingent consumption payoff from the task of determining the corre-
sponding trading strategy generating the optimal state-contingent payoff. In
contrast, when applying dynamic programming techniques, both tasks are
closely intertwined. The single steps of the three date examples of section
4.5 can be put together to form a ’cookbook recipe’:

I5For the moment, we abstract from interest rate related issues. If interest rates were
explicit, a need for discounting would arise of course.
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1. Solve the optimization problem in martingale form and obtain as out-
put an optimal state-contingent consumption payoff for the terminal
date.

2. Equipped with this optimal payoff, work backwards in time to com-
pletely derive the optimal wealth process and the trading strategy that
generates it.!0

16Since all problems analyzed in this thesis are terminal consumption problems, we
abstract here from optimal consumption problems where agents may consume before the
terminal date of the economy. Of course, the recipe only applies to terminal consumption
problems.
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In this last part of the thesis, we apply the martingale methods presented
in part II of the thesis to three different economic settings. The first ap-
plication is to the binomial model of Cox, R0oss, and RUBINSTEIN (1979).
Within their framework, we examine in chapter 5 dynamic hedging strate-
gies. We give a proof for the claim that dynamic hedging of contingent claims
with convex payoffs leads to positive feedback.

The other two applications are to general equilibrium models. In chapter
6 and 7, a general equilibrium analysis of dynamic hedging is carried out.
The market model considered in chapter 6 is complete in equilibrium whereas
inherent market incompleteness characterizes the market model considered
in chapter 7. Apart from this exception, the two models share all other
features. Both are, for instance, representable by event trees. One of the
early treatments of equilibrium models with uncertainty being represented
by event trees is found in DEBREU (1959, chapter 7). ARROW (1964) was
the first to emphasize the spanning role of securities in such a context. An-
other assumption characterizing both chapters is that there is a continuum of
agents populating the model economy, a formulation dating back to AUMANN
(1964) and AUMANN (1966). In the spirit of similar noise trader studies, the
population itself comprises two types of agents: rational agents (non-hedgers)
and noise traders (hedgers).

Questions that naturally arise in a general equilibrium context are those
of the existence and the determinacy of general equilibria. Answers to these
questions depend in a crucial manner on whether markets are complete or not.
Regarding the existence of general equilibria in complete markets results may
be found in the pioneering texts of ARROW and DEBREU (1954), DEBREU
(1959), and ARROW and HAHN (1971). DUFFIE and SONNENSCHEIN (1989),
for example, provide a survey of existence results and give many further
references to early and more recent work. The study of the existence of
general equilibrium in incomplete markets is a newer discipline. Surveys are
given, for instance, in DUFFIE (1992) and MAGILL and QUINZII (1996).

Our approach to investigating the impact of dynamic hedging on market
equilibrium heavily relies on comparative statics analysis. Considering this,
the uniqueness of general equilibrium is a condition we cannot dispense with.
In this respect, DUFFIE and SONNENSCHEIN (1989, 575) remark:

”In the absence of uniqueness, the comparative statics of how
prices and allocations will change with a change in the parameter
values is not a well-defined exercise.”

ArRrOW and HAHN (1971, chapter 9) and KEHOE (1985) survey results
regarding the determinacy of general equilibrium in complete markets while



104

CAss (1992) surveys those obtained in incomplete markets.!” Unfortunately,
necessary assumptions that ensure the uniqueness of a general equilibrium
are very strong in general.

The way by which we guarantee uniqueness is to postulate the existence
of a representative agent or, more precisely, to postulate that all rational
agents are identical and satisfy certain conditions relating to their utility
function. Although it may seem quite restrictive, it is nonetheless a very
common approach to asset pricing, as DUFFIE (1992, 230) notes:

”The traditional approach to asset pricing theory has been to
assume either a single agent or complete markets.”

This statement should be judged in the light of results by CONSTANTI-
NIDES (1982) who proves the existence of a representative agent in complete
markets. Since the representative agent paradigm applies to complete as well
as to incomplete markets equally well, we directly assume the existence of
such an agent. This allows us to pursue a rather general strategy in ex-
ploring the general equilibrium models because, in principle, we do not have
to differentiate between complete markets settings and incomplete ones. In
fact, the analysis of the representative agent’s problem is very similar in both
complete and incomplete markets. MILNE (1995) provides a rather compre-
hensive survey of representative agent theory.

Another strand of literature related to our approach is concerned with
the viability of equilibrium price processes. BICK (1987), Bick (1990) and
HE and LELAND (1993) derive necessary and sufficient conditions for the
viability of equilibrium price processes in complete markets. In a sense, we
extend upon their work by showing that some results carry over to settings
where noise traders are present and also to settings with inherent market
incompleteness.

17 An interesting treatment of this issue may also be found in Cass (1991).



Chapter 5

Dynamic hedging and positive

feedback

5.1 Introduction

The plan for this chapter is roughly as follows. We first explore in section 5.2
and sub-section 5.3.1 the binomial option pricing model originally proposed
in Cox, Ross, and RUBINSTEIN (1979). Second, we compare in sub-section
5.3.2 the binomial pricing model with the approach of BLACK and SCHOLES
(1973) to pricing options. We outline that there exists a close relationship
due to strong convergence results from discrete to continuous time. Third,
we will turn in section 5.4 to dynamic hedging strategies and prove that
they produce positive feedback if the corresponding contingent claim has a
convex state-contingent payoff. With regard to the positive feedback result,
an example based on the BLACK / SCHOLES option pricing formula will
provide a graphic illustration. A brief summary in section 5.5 concludes the
chapter.

5.2 The market model

This section embeds the binomial option pricing model into the general
framework introduced in chapter 4. Our exposition follows that in LAMBER-
TON and LAPEYRE (1996, section 1.4) rather closely. However, the original
article is quite accessible as well and the model itself has become a common-
place in any good finance book.

In the Cox / Ross / RUBINSTEIN model, there are only two securities,
one of which is risky, called stock, while the other one is risk-less and called
bond. Therefore, we have the special case where the number of risky securities

105
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is K =1 in the market model M = {(Q, p(2),F,P),N,S,I} of section 4.2.
Apart from this exception, we employ all other assumptions made in section
4.2, and in particular the standard assumptions as found in section 1.1. In
the following, we will further specify several elements of the market model.

The model economy lasts for the time period [0, N], where N € N and
1 < N < oo. New information arrives at N + 1 dates n € {0,1,...,N}. At
these dates only, economic activity is observed. The bond, throughout the
chapter indicated by the superscript ’0’, has a date n price S° that is given
by,

SO =(1+7)"

r denotes the constant, risk-less interest rate for all time intervals [n,n + 1],
n € {0,...,N — 1}. Thus, the discount process (3, )nco,.,n} satisfies Vn :
B,=14+r)™

We label the stock with the superscript '1” throughout the chapter. Given
the stock price S! at date n € {0, ..., N — 1} the stock price at date n + 1 is,

1 —_ 1
Sn+1:Sn'm,

where nature chooses m randomly out of {1+w,1+d}. u and d are constant
and satisfy —1 < d < u. S} is strictly positive, fixed and publicly known.
Security prices SO and S!,n € {0,...,N — 1}, are constant over the time
interval [n,n + 1[.

Uncertainty in the model economy is generated by the stock price process
(S,ll)ne{owN}. In particular, the stock price process gives rise to Q = {1 +
u, 1+ d}V. In other words, to each state w of the economy at date N corre-
sponds a stock price path with 5 > 0 upward-movements 1 4+ u, and N — j
downward-movements 1 + d.! These paths may formally be represented by
date-ordered N—tuples (my,...,my) where Vn : m, € {1 +u,1+d}. A
graphic illustration will be given shortly. The filtration F = (F,)neqo,...n} 18
the filtration generated by the stock price process (S})nefo,...,n3- As a conse-
quence, it satisfies Fo = {2, Q}, Fy = p(Q) and F,, = o(S; : i € {0,...,n}).
Moreover, we assume that the probability measure P satisfies Vw € Q :
P(w) > 0. Taking everything together, this defines the filtered probability
space (2, p(Q2),F, P) with which we will work.

We now want to provide a graphic illustration for the resolution of uncer-
tainty in the binomial model. An appropriate tool for this task is the event

Since it is quite common in the literature, we use the words "upward-movement’ (for
1+ ) and ’"downward-movement’ (for 1+ d) relative to the risk-less return (14 r). If fact,
it can also be that 1+ d > 1 meaning that even a ’"downward-movement’ leads to a higher
stock price.
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o node 1 Slel
o pode 2 5]1\;2
°o node 3 S}v3
o node 4 5]1\;4
° node 7 Sjl\[i

[e]

1
o node 2V — 2 SN(QN_Q)

1
° IlOde 2N — ]. SN(szl)

o

node 2V SNyn
date 0 date 1 date 2 -+ date N

Figure 5.1: The event tree generated by the stock price process.

tree.? An event tree describing the binomial model is depicted in figure 5.1.
As can be seen in this figure, the stock price process generates an event tree
with 2" different nodes at date n € {0, ..., N}.* Consequently, the number
|©2| of possible states of the economy at date N equals the number of ter-
minal nodes 2% since each state of the economy corresponds to exactly one
terminal node of the tree. If one assigns a top-down numbering to all nodes
at a given date n, one can denote by n;, i € {1,2,...,2"}, the i—th node from
the top at date n. The stock prices corresponding to these nodes are denoted

by St i€ {1,2,..,2"}.
Summary
In summary, we have the market model,
MEOER = {(Q, p(Q),F,P),N,S", T},

where,

2Formally, the type of tree we consider is characterized by two properties: (i) the
tree has exactly one node that has no predecessor and (ii) every node in the tree has
exactly one predecessor. In economic analyses, this type of tree is sometimes also called
information tree or decision tree. Section 12 of DUFFIE (1988) contains a general treatment
of economies that allow for an event tree representation.

3At date n = 0 there is only one (2° = 1) node, at date n = 1 there are two (2! = 2),
at date n = 2 there are already four (22 = 4) and so forth.
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e O ={1+u1+d}",

F is the filtration generated by the stock price process (S;:)nefo,....N}+

P is strictly positive for all w € €2,

N € N satisfies 1 < N < oo,
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I is as defined as in chapter 4.

5.3 Contingent claim pricing

5.3.1 Pricing in the Cox, Ross, and Rubinstein (1979)
model

With the complete setup MHE of the Cox / R0osS / RUBINSTEIN model we
can go on and derive prices for contingent claims. The sub-section culminates
in the famous pricing result for European call options, namely the binomial
option pricing formula. Before we attack this pricing formula, it is worthwhile
to consider some economic aspects relating to the present market model first.

Lemma 36 provides a necessary condition for M F® to be arbitrage-free.
It will turn out, however, that it is also sufficient.

Lemma 36 If the market model,
MCRR = {(Q’ p(Q)’ IF? P)7N7 Sl’ I[}’
is arbitrage-free, then r €]d, u].

Proof. In arbitrage-free markets there exists a P-equivalent probability
measure Q that makes the discounted stock price process (3,,5; )nefo,...N} @
martingale. This result has been formulated as part of Theorem 29. Under
such a Q, it must therefore hold for all n < N — 1 that,

Er?[ﬁnJrl ' Srll—&-l] - ﬂn ’ 5711

S&H—l Bn
“ B [ S1 } -

qQ[%n] _
@Enlsl}—l—ﬂ“.
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And since Séil € {1+ u,1+d}, it follows that 1 +r €]1 +d,1 + u[ and
so r €]d,uf as asserted. Also compare LAMBERTON and LAPEYRE (1996,
12).m

In view of lemma 36, let us assume for this chapter that r €]d, u][. One

then obtains,

Lemma 37 In the market model MYEE = {(Q, o(Q),F,P),N,S' I}, there
exists a unique P— equivalent martingale measure, henceforth denoted Q, that
makes the discounted stock price process (6n5711)n€{0,m71v} a martingale. The
unique transition probabilities at all nodes and dates associated with this mar-
tingale measure are q = Z:‘; for an upward-movement 1 4+ u, and 1 — q for a

downward-movement 1 + d.

Proof. Note that the discounted stock price process (ﬁnS}l)ne{o,...,N} is a
martingale under a probability measure Q if for all n < N — 1,

Eg[ﬂnﬂ ' 871L+1] = ﬁn ’ Sib

Q 5$+1] _ B

©Enl3% ﬂn+1

=q¢ (1+u)+(1—-q) - -1+d)=1+r
_r—d

<:>L]—u_d.

This proves the lemma since the unique transition probabilities ¢ and (1 —q)
define the unique P—equivalent martingale measure Q. H

Proposition 38 The market model MYFE = {(Q, p(Q),F,P),N,S' I} is

arbitrage-free and complete. Formally, A = R‘f'.

Proof. Lemma 37 is the key to the proof. Arbitrage-freeness follows from
lemma 37 and Theorem 29. Arbitrage-freeness, lemma 37 and proposition
35 together imply completeness. B

After having ensured that the market model is complete, we can be sure
that every contingent claim is attainable. Furthermore, arbitrage-freeness
implies that it is possible to associate a unique price with every contingent
claim.

The contingent claims that are of particular interest for the moment are
FEuropean call options. Recall that European call options on a stock give
its holder the right but not the obligation to buy the underlying stock at
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maturity - in our model at date N - for a predetermined price X, the so-
called exercise price. The payoff C'y of such an option contract with exercise
price X and maturity N is formally given by?,

Cy:Q — Ry, w+— max{Sy(w) — X,0}. (5.1)
For such an option, we have,

Proposition 39 (Cox, Ross, and RUBINSTEIN (1979)) In the market
model MCEER = 1(Q, p(Q),F,P),N,S', 1}, the date n price of a European
call option described by (5.1) is,

Cn(S,) = (147) - B

n

N

maX{S}l- H Sli —X,O}] (5.2)
i=n+1 i1

N—n

= (147) ™. Z l(N(J_Vn__";_!)!j! (1= gV

-max {S} - (1+d) - (1+w)N™7 - X,0}], (5.3)

where everything is as defined as before.

Proof. (5.2) is an application of corollary 30 and proposition 31. For a
proof of (5.3) refer to Cox, Ross, and RUBINSTEIN (1979). After obvious
notational adjustments, (5.3) corresponds to formula (6) in that article. B

Remark 7 We can calculate the date n price P, of a Furopean put option
with the same defining properties as the call with the help of the put-call
parity,

Cr(Sh) — Pu(Sp) = St — X - (1 + 7)==,

5.3.2 Comparison with Black and Scholes (1973)

The model of Cox, Ross, and RUBINSTEIN (1979) and their derivation of
the binomial option pricing formula (5.3) have marked an important step
towards a deeper understanding of the principles underlying the BLACK /
SCHOLES / MERTON approach to option pricing.” The concept of risk-less
arbitrage is something that is almost visible and intuitively accessible in the
binomial option pricing model. In contrast, in the BLACK / SCHOLES model
risk-less arbitrage is something that happens behind the scenes since they

4See also the example in sub-section 4.4.1.
5 Also refer to the informal discussion in section 1.1.
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work in continuous time.® The tractability and transparency of the discrete
time model is one major reason why the binomial model has become very
popular in the financial services industry. HE (1990, 523-524) remarks:

"The binomial model provides an easy way of explaining (with-
out using advanced mathematics) how uncertainties are resolved
in the continuous-time model and how continuous trading in the
stock and the bond can span infinitely many states of nature.
More importantly, it provides an elegant numerical alternative to
the partial differential equations (PDE) obtained in continuous-
time models. The binomial option-pricing technique has now be-
come an extremely powerful tool for valuing derivative securities
that might be difficult to price under other alternative methods.”

Nevertheless, working in discrete time also produces disadvantages. Gen-
erally, there are no closed form solutions available that could be manipulated
analytically. Therefore, we want to state the original result of BLACK and
SCHOLES (1973) although it does not fit very well in the mathematical setup
of the chapter and the thesis as a whole. However, because of its closed
form-property, it enables graphic illustrations of some aspects we will tackle
in section 5.4. This excursion to a continuous time setting will hopefully help
in the end to better grasp the ideas behind the rather formal considerations
that we will conduct in section 5.4.

Since working in continuous time, BLACK and SCHOLES (1973) consider
all points of a given time interval [0,7] to be relevant instead of a finite
selection of dates out of this interval. In their model, there is a continuous
inflow of new information. To avoid ambiguity, we label dates by ¢t where t €
[0, T] when referring to the BLACK / SCHOLES world.” With this notation,
a European call option is defined by®,

Cr:R,, — R, S} max{S} — X,0}. (5.4)

Now,

6The BLACK / SCHOLES pricing formula is often described by the picture of a ’black
box’ because one can only observe how a change in the input variables changes the output,
i.e., the option price, but not why it does so.

"In the BLACK / SCHOLES world, the stock price follows a geometric BROWNIAN mo-
tion. For the other assumptions characterizing the BLACK / SCHOLES world, refer to the
original article BLACK and SCHOLES (1973).

$Note that the call option is here defined directly on the stock price. In the BLACK /
SCHOLES model, the positive real line represents the set of possible states of the economy.
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Proposition 40 (BLACK and SCHOLES (1973)) The date t price of the
option (5.4) is,

—rBS~t*

Cy=5-®(dy) —e - X - ®(dy) (5.5)

| 3+ (rBS + —("B:’Q> -t
with di = TR , (5.6)
d2 = dl — O'BS . \/t_*, (57)
t*=T —t and
1[4 2
¢ (d) = — e zdx

S} denotes the stock price at datet, t* the remaining life-time of the option, X
the exercise price, rB5 and oP% the (constant) risk-less interest rate and the
(constant) volatility parameter in the BLACK / SCHOLES model, respectively.

Proof. WiLmoTT, HOWISON, and DEWYNNE (1995), for instance, provide
in chapter 5 a proof which draws on partial differential equations. This way
of proof has been the first rigorous one to attack the option pricing problem.
Brivs, BELLALAH, MAI, and DE VARENNE (1998, 53-56), for example,
prove the result the martingale way. Of course, the seminal article of BLACK
and SCHOLES (1973) may also be consulted. B

Remark 8 As mentioned in the context of the binomial option pricing for-
mula, one can derive European put option prices P, easily from (5.5) and the
put-call parity. In continuous time, this relationship takes on the form,

_,,,BS 14*

Ci(Sp) = Pi(S) =S} — X e

A numerical example shall demonstrate the graphic capabilities of formula
(5.5).

Example 41 Consider a Furopean call option on a stock which has a volatil-
ity of oB% = 0.30 while the risk-less interest rate is r®% = 0.05. The defining
properties of the call option are X = 100 and t* = 0.75. Figure 5.2 plots the
option price against S} and t*, figure 5.3 does it against S} and oP5. As the
figures visualize, increases in S}, t* or o5 all have a positive impact on the
call option’s value. A
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Figure 5.2: The BLACK / SCHOLES value of the call option for varying S}
(denoted by S) and t* (denoted by R).

As already pointed out in the original contribution of Cox, R0ss, and
RUBINSTEIN (1979), option prices obtained from the binomial pricing for-
mula converge, under appropriate assumptions, to those obtained from the
BLACK / SCHOLES formula if the number of dates N reaches infinity. For-
mally,

: CRR BS

Wi, G = G
where CYFE denotes a European call option’s price at date n according to
Cox, Ross, and RUBINSTEIN (1979) and C29 denotes its price according to
Brack and SCHOLES (1973) at this date. About 10 years later, HE (1990)

generalizes this idea considerably in his article:

”... we present a convergence from discrete-time multivariate

multinomial models to a general continuous-time multidimen-
sional diffusion model for contingent claim prices. ... We show
that the contingent claim prices and the replicating portfolio
strategies derived from the discrete-time models converge to the
corresponding contingent claims prices and replicating portfolio
strategies of the limiting continuous-time model.” HE (1990,
524).
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Figure 5.3: The BLACK / SCHOLES value of the call option for varying S}
(denoted by S) and o (denoted by v).

This concludes our excursion to the BLACK / SCHOLES world of option
pricing. The next section returns to the binomial model M“#% to investigate
dynamic hedging strategies.

5.4 The main result

5.4.1 Derivation of the main result

Section 5.2 was primarily concerned with the derivation of reasonable prices
for attainable contingent claims, i.e., prices enforced by the absence of arbi-
trage. According to definition 24, a contingent claim is attainable if there
exists an admissible trading strategy that generates its payoff at maturity. A
major part of the elegance of the martingale approach is due to the circum-
stance that trading strategies themselves can almost be neglected; they only
have to exist’. However, besides the importance of the ideas regarding the
pricing of contingent claims developed so far, a second field of application
has become even more important in the real marketplace in recent times:
dynamic hedging of contingent claims.” The remainder of this sub-section
focuses on the development of the strong result that dynamic hedging of a

9Recall the discussion in section 1.3.
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contingent claim, i.e., the implementation of a trading strategy that gen-
erates its payoff, leads to positive feedback trading if the payoff is convex.
The Cox / Ross / RUBINSTEIN model, MEEE = {(Q, o(Q),F, P),N, S, I},
proves to be a fruitful place for this intention.

All assumptions and notational agreements of section 5.2 remain in force.
Suppose that the predictable vector process (¢, )nefo,..,n}, Which consists of
the two component processes (qbg)ne{o,_”, ~} and (Qbi)ne{o,..., N}, is the admissi-
ble trading strategy that a hedger implements in order to dynamically hedge
an attainable contingent claim Ay € A. Hence,

Ay = Vn(¢) and
A = Vol(0) =Eg [Bx - Vi(9)].

We will simply refer to such a strategy as the ’dynamic hedging strategy for
AN’

With respect to the derivation of the main result, the plan is as follows.
First, we derive the number of shares held by the hedger at a given node
of the tree. Second, a certain property of convex functions is stated and
proved. Third, we apply this property to the stock holdings of the hedger
which eventually leads us to the conclusion that dynamic hedging produces
positive feedback if the state-contingent payoff of the respective contingent
claim is convex in the stock price.

Lemma 42 The number of shares of the stock ¢\, n € {1, ..., N}, held during
the time interval [n — 1,n[ to dynamically hedge a contingent claim Ay € A
18,

An, — Ay
= o1 —or (5.8)
n; ni41

where i € {1,3,...,2" — 1} and where j = 2L, gzﬁ,llj is determined at the j—th
node at date n — 1. A, is the contingent claim’s value at node ¢ at date n.

Figure 5.4 illustrates the interdependencies of the different subscripts used
in lemma 42. It should facilitate the understanding of the rather complex
notation.

Proof. It is obvious that for a given date n,

Gn - (L+1)" + ¢y - Sy = A, (5.9)

must hold. Otherwise, the portfolio would not perfectly hedge the contingent
claim. For given nodes i and i+ 1,4 € {1,3,...,2" — 1}, at date n, (5.9) gives
rise to the linear system,

¢?Zj ' (]' —I— /r)n + d)'}Z] ' S’I]I-, - Ani+1 ‘

i1
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node 7 — 2
node j — 1 qbijfl
oe.nodesi—1 ..
| node 1 S}% Ap, ¢%n+1), E

___________________

___________________

IlOde l + 1 Sii«kl ATL,‘Jrl ¢%n+l)i+1 :

date n —1 daten

Figure 5.4: An extract from the tree.

Subtracting the second equation from the first one and rearranging terms
yields the desired expression for gzﬁilj. [ |

Heuristically, a positive feedback trader buys shares of the stock if its
price rises and sells shares if its price declines. In our setup, positive feedback
trading strategies can be defined formally as follows.

.....

strateqy is a positive feedback trading strategy in the stock component
(n)nefo,...vy if it satisfies,

V(2 <n<N): (¢ —bpy) - (Spoy = Sps) > 0. (5.10)

To check whether a dynamic hedging strategy for a contingent claim with

convex payoff produces positive feedback, i.e., whether it satisfies condition
(5.10), we will draw on the following basic result for convex functions.

Lemma 44 Let A: D — R, S — A(S) be a function. If A is convez in S,
then it satisfies, . .
A(S1) = A(S) _ A(S) = A(S2)

S, —S S—8

where S; > S > S,.

Proof. Since A is assumed to be convex in S and since S; > S > S5, we
have,

< .
AB) < 5o AB)+ 5 —

- A(S2)
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& (S1—5) - A(S) < (S—52) - A(S1) + (851 —5) - A(S,)
& (S — %) - AS) + 5 - A(S)

<S8 AS) + (S = 8) - A(S1) + (51— S) - A(S2)

& (5= 8) - AS) - (S—S) - A(S))

< (S1—58) - A(Ss) — (S1 = 5) - A(S)

o AB) = AS) _ ASy) — AB)

S —8 Sy — 8
L AS) = AB)  AB) - ASy)
S — 8 - S—5

This proves the lemma. B

Eventually, we can establish the central result of positive feedback as
proposition 45 below. It merely puts together the single pieces we have
produced so far.

Proposition 45 Let a contingent claim be given by,
AN Q) — R+,w — AN(S}V((U))

The dynamic hedging strategy,

for Ay is a positive feedback trading strategy in the stock component (¢, Jnefo
if An is convex in Sy,. Formally,

.....

Ay is convex in Sy = (dn)nefo,...ny satisfies (5.10).

Proof. In what follows, we will work with an arbitrary seven-node sub-tree
- starting at n — 2 where 2 < n < N - of the whole tree. Figure 5.5 depicts
such a sub-tree. In this figure, k = 2 ;’1, j= ﬂ and consequently k = %.

The proof itself consists of three steps. Flrst we make sure that the price
A, of the contingent claim Ay at an arbitrary date n is convex in S.. We
need to do this first since it represents a prerequisite for applying lemma
44. Second and third, we prove by applying lemma 44 and a martingale
argument, respectively, that condition (5.10) is satisfied under the convexity
assumption.

Step 1: Proposition 31 and corollary 30 determine the price A, of the contin-
gent claim at date n as,

An = B, -ER [By - An(Sy)]
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1
A, S
(n—1);
1
A”H»l Ni+1
-7 1
P Ani+2 Sm‘+2

nj+1 ~(n—1)41
A

date date date
n—2 n—1 n

Ti+3 M43

Figure 5.5: A seven-node sub-tree.
N

1
v (st 1T 5]

i=nt1 i1

N—n

1 N —n)! ; Nen—j
= BB > {(N<_n_§)!j!-q (1-q)

An (Sh-(T4+d)Y - (1 +w)N )] (5.11)

J=0

Recalling that 3!, 3y > 0 and that Ay is convex in S} by assumption,
we can deduce from (5.11) that A, is a convex function in S}.

Step 2: Consider now figure 5.5. Lemma 42 determines the necessary stock
holdings during [n — 1, n[ to hedge the contingent claim Ay as being,

An, — An,
1 _ g 41
anj = m and (512)
A, — A,
bh., = G (5.13)
a Sflli+2 o Sflli+3

As before, S,,lh_ denotes the stock price prevailing at node 7 at date n
and ¢7llj denotes the stock position during [n — 1,n[ as set up at j—th
node at date n— 1. Furthermore, it holds A,,, = 8,"-EQ [8y - Ax (S})]
with Eg [-] denoting the conditional expectation given the information
set F,, at node 7 at date n. After noting that,

Shs = Sha = Sty (14 0) - (140,

Ti4+1 Ni+2
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and therewith A} =~ = Al . one can apply lemma 44 to (5.12) and
(5.13) to see that,

1 1
¢"j = ¢"j+1'

The discounted price process of the contingent claim, (3, Ay )nefo,...,N3
is a martingale under Q which follows from proposition 1.2.3 in LAM-
BERTON and LAPEYRE (1996, 5). Given a node k at date n — 2, we
therefore have,

A(n*Q)k = (1 + r)_l ' Egl*Q)k [A(nfl)}
& (I+7)-Ap-2), =q¢-Ap-1), + (1 = q) - Apn-1),4,,
where k = % And so,
0 0 1 1
(L47) (a1~ Stam2ps + By~ St
= - (4, - Sthn, + 9%, Sty )
+(1—q)- <¢91j+1 ’ S?n_l)j-'rl + qb711j+1 ) S(ln—l)j+1>
< QS(()n*l)k ’ (1 + T>n71 + (1 + T) ’ Qﬁénfl)k: ’ S(1n72)k
_ 0 0 n—1
o (4w gl + (=) (1+d)- 0] St
Notice that S?an)k = (1+ r)" 2. The last equality holds if both,
oty =4 Gn, + (1 =) - 8,
and,
A+7) - Ppp=q-1+u) ¢, +(1=q)-(1+d)-¢, ., (514)
are satisfied. From (5.14),

1 _Q’(1+U> 1 (1—Q)'(1+d) 1
qb(nfl)k - 1+T ¢n]+ 1+T ) ¢nj+1'
=7 =7

Recalling from the proof of lemma 37 that ¢- (1+u)+(1—¢q)-(1+d) =
1 + r, one concludes that ¢ + ¢ = 1 with ¢,¢J > 0. Recalling that
ot > ¢111j+1 (step 2), this implies,

Bry; 2 Dlniye = By (5.15)

Finally, noting that S(lnq)j > S(1n72),€ > 5’(17%1)]_+1 by construction and
combining this with (5.15), one concludes that (5.10) is indeed satisfied
because n > 2 was arbitrarily chosen. ®
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5.4.2 A graphic illustration of the main result

The BLACK / SCHOLES option pricing formula allows insightful graphic

demonstrations of the main result stated as proposition 45. Differentiating

(5.5) with respect to the stock price, one obtains for European call options!?,

aCt _pBS p*
— =T ) 1
e (d). (5.16)
whereas one gets,
8Pt _pBS px
—— = T - ®(—d 1
o5 (~dy). (517

for European put options. d; is here as defined as in (5.6). The first derivative
of the pricing formula with respect to the underlying stock price is commonly
called the delta of the option. Roughly speaking, it represents the number of
shares of the underlying stock contained in the date ¢ hedge portfolio for an
option according to BLACK and SCHOLES (1973). Hence, if delta increases
with increasing stock price, i.e., if in the case of a European call option,

9%C, -
(28})°

9

then one clearly has a positive feedback hedging strategy.!’ The following
example demonstrates graphically that this is actually true for European call
and put options.

Consider a European option and the parameter specifications,

X = 50,755 =0.05,0%° = 0.2,

where X denotes the exercise price, 7% the risk-less interest rate, and 0%
the BLACK / SCHOLES volatility parameter. Figure 5.6 plots the delta of
a call version of the option against S} and t*, figure 5.7 plots it for a put
version in the same way. The delta of the call option is positive and only
takes values between 0 and 1, whereas the delta of the put option is negative
only taking values between —1 and 0. Though differing in their absolute
values, both increase with a rising stock price, indicating positive feedback
hedging in each case.

10 Compare WiLMoTT, HOWISON, and DEWYNNE (1995, 79-80).

' The second derivative of the pricing formula with respect to the underlying stock price
is commonly called the gamma of the option. See chapter 14 of HULL (1997) for further
details on the option ’Greeks’ and their role in hedging options.
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Figure 5.6: The delta of the European call option against S} (denoted by S)
and t* (denoted by R).

5.5 Summary

In this chapter, we have elaborated a crucial point about dynamic hedging
strategies: It does not matter whether the hedged contingent claim is a
European call option, a European put option or some other derivative. If the
state-contingent payoff of the contingent claim is convex in the underlying’s
price, then the corresponding dynamic hedging strategy is a positive feedback
strategy. Although the analysis in this chapter was mainly restricted to a
discrete time setting, results from HE (1990) imply that the positive feedback
property of dynamic hedging strategies carries over to their continuous time
counterparts. Furthermore, SIRCAR and PAPANICOLAOU (1997), working in
a generalized BLACK / SCHOLES setting in continuous time, validate the
positive feedback result for convex payoffs from scratch.
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Figure 5.7: The delta of the European put option against S} (denoted by S)
and t* (denoted by R).



Chapter 6

Dynamic hedging and general
equilibrium in complete
markets

6.1 Introduction

This chapter poses a problem for an economy with a continuum of agents: Can
positive feedback trading by agents with non-zero market weight! decrease
stock price volatility if prices are set in equilibrium by risk-averse agents?
Inspired by empirical observations and experiences made by practition-
ers, many authors have suggested equilibrium models with hedgers having
non-zero market weight for the purpose of exploring the potential impact of
dynamic hedging on financial markets. As discussed in chapter 2, there are
two approaches to analyze dynamic hedging in an equilibrium context: one
stressing technicalities, such as positive feedback, the other stressing the role
of information regarding the extent to which dynamic hedging takes place.
Almost all authors report that dynamic hedging increases the volatility
of the underlying. Due to the overwhelming evidence, it seems likely that
the observed effects have a common cause. Many authors have identified the
payoff convexity of common derivatives as their preferred candidate. This
is because payoff convexity causes the corresponding dynamic hedging strat-
egy to pose positive feedback on markets. We formally verified this claim
in chapter 5. Intuition suggests that such a trading behavior is likely to
increase the volatility in those markets where it is implemented. The argu-
ment is that positive feedback trading pushes prices even higher after a price
rise and drags them further down after a price fall. Thus, market volatility

IThis is made precise in the body of the chapter.

123
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increases. However, the work of BASAK (1995) constitutes a remarkable ex-
ception in this respect. His model predicts that market volatility decreases
in the presence of portfolio insurance, although the given explanations seem
a bit unsatisfactory. In particular, it is not clear what the crucial assumption
is that leads to his results. BASAK (1995, 1081) himself admits:

”Qur result is in sharp contrast to the popular belief that portfolio
insurance increases market volatility. The striking point about
our conclusions is that this popular belief breaks down even in one
of the most standard, best understood setups in finance [Lucas
(1978) and CRRA preferences].”

The market model in which we embed our analysis in this chapter is, like
the binomial model MYEE of chapter 5, a special case of the market model
M of chapter 4. However, there are several differences on which we want
to comment briefly. The first is that we allow the set of agents I to include
irrational or noise traders. In particular, there is a group of agents with
non-zero market weight dynamically hedging contingent claims. The second
main difference is that the security price process of the only risky security is
determined in equilibrium rather than given exogenously. Two more minor
differences are that we only consider the special case where N = 2 and that
interest rates are implicit in the market model. A brief summary of the
market model specifics follows.

The market model can be characterized as follows. The model economy
is populated by a continuum of agents and lasts for the period [0, 2]. New
information about the true state of the economy at the terminal date ar-
rives at only three different datesn € {0,1,2}. Two types of agents are
active: hedgers implementing dynamic hedging programs for given contin-
gent claims, and non-hedgers maximizing their expected utility from end of
economy consumption. Agents can trade a stock and a bond. We prove that
there exists a unique general equilibrium under our assumptions. In addi-
tion, the market model is complete under a common knowledge assumption
so that the hedgers may achieve a perfect hedge at a given price.

The findings of BASAK (1995) let the author, referring to GROSSMAN
and ZHOU (1996), reasonably conjecture the following:

”In their numerical analysis, for a given set of exogenous pa-
rameters, they show that the net effect is an increase in market
volatility. However, intuition would suggest that there might also
be cases in which volatility would decrease.” BASAK (1995, 1079).
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In our simple model, it is possible to show that positive feedback hedging
by agents with non-zero market weight is neither sufficient nor necessary to
observe an increase in stock price volatility. In other words, we show by
mainly relying on numerical examples, that negative feedback hedging can
increase stock market volatility as well, and that positive feedback hedging
may also decrease stock market volatility. Therefore, we can contribute to
some extent to the resolution of the puzzle that arose through the findings
of BASAK (1995). Moreover, our findings represent evidence for the above
quoted conjecture of BASAK (1995) that the net volatility effect of dynamic
hedging depends on the respective parameter specifications.

We are also able to derive strong analytical results for European call and
put options. Volatility increases if European call or put options are hedged
and it increases with increasing hedge demand. Moreover, hedge costs per
option increase with increasing hedge demand, which is demonstrated for call
options. Consequently, markets are no longer linear in the usual sense of the
standard theory.?

The chapter proceeds as follows. Section 6.2 delineates the market model.
Section 6.3 carries out the general equilibrium analysis and contains an ex-
istence and uniqueness proof. Section 6.4 explores some special cases. The
comparative statics analysis of feedback effects from dynamic hedging takes
place in section 6.5. In particular, we investigate dynamic hedging of Euro-
pean calls and puts in this section. Section 6.6 summarizes the main results.
Finally, section 6.7 contains proofs of several results stated in the body of
the chapter.

6.2 The market model

The market model is a special case of the market model,
M ={(Q,p(Q),F,P),N,S, 1},

presented in chapter 4. This section gives an overview of the relevant market
model details.

6.2.1 Primitives

Consider an economy with uncertainty over the fixed time interval [0, 2].
News about the true state of the economy at the terminal date 2 arrives at
dates n € {0,1,2} and all economic activity is observed at these dates. Un-
certainty resolves according to a stochastic process, the so-called fundamental

2Compare definition 26, section 4.3.
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state process (7),,)ne{0,1,2y Where Vn : 1, > 0. The event tree corresponding
to the state process has the following shape,

first date | intermediate date | terminal date

"

n
15"

7]0 5

5"

nf
5"

n=>0 n=1 n=2

where we assume,
st > st > ngt > gt

Four states w of the economy are possible at the terminal date, while only
two states are possible at the intermediate date. Formally, the state space is
given by Q = {uu, ud, du,dd}. We call the node corresponding to 7} simply
the "u node’ and that corresponding to n¢ the ’d node’ at date n = 1. The
terminal nodes uu and ud may be reached from the u node only while the
terminal nodes du and dd may only be reached from the d node.

The state process (1,,)necfo1,2) generates the filtration F = (F,)nefo,1,2)
where,

Fo = {@, Q},
Fi = {9, {uu,ud},{du,dd},Q} and
.FQ = p(Q)

The probability measure P is strictly positive for all w € 2, i.e., Vw € Q :
P(w) > 0. Ultimately, the filtered probability space (2, p(2),F,P) sum-
marizes these pieces of information. To conclude, there is one homogenous
consumption good available in the economy.

6.2.2 Securities

Two securities are traded at dates n = 0 and n = 1. One security is risk-less
and called bond. It is in zero net supply. At n = 2, the bond pays out
one unit of the homogenous good. Since it serves as the numeraire, its price
is normalized to one giving rise to a bond price process (S9),e0,1,2y Where
Vn : S = 1. By this normalization, interest rates are implicit in the model.
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The other security is risky and called stock. The stock is in strictly
positive supply. One share of the stock represents a claim to 7, units of
the homogenous good at n = 2. The stock price process (S})neqo,1,23 has
therefore the same structure as the process (1, )nec{0,1,2},

| first date ‘ intermediate date ‘ terminal date ‘

Sa (uu) = ny*
Si(u)
Sa(ud) = ns*
S .
S5 (du) = ns"
Si(d)
Sy (dd) = n5"
| n=>0 ‘ n=1 ‘ n =2 ‘

Formally, the stock price process is adapted to the filtration F, i.e., ¥n : St
is F,—measurable. Stock prices at n = 0 and n = 1 are set in equilibrium
which will be examined later.

In summary, the sequence of events over time is,

=0 Markets open for both the stock and the bond
- Demand and supply enforce an equilibrium stock price S}
n 1 Stock and bond markets open again
- Demand and supply enforce an equilibrium stock price S}
One share of the stock pays 7, units of the consumption good
n=2 . . .
One unit of the bond pays 1 unit of the consumption good

Because of the assumption that prices at n = 0 and n = 1 are set in
equilibrium, uniformed trading may influence the stock price at these dates.
At n = 2, however, stock prices are completely determined by fundamentals
so that uninformed trading cannot have any impact. As a result, these
assumptions ensure that the model is consistent with empirical findings that
uninformed trading is likely to influence stock prices in the short run as well
as that stock price returns are mean-reverting in the long run.?

To conclude the description of securities markets, markets are assumed to
function perfectly and information regarding relevant parameters is complete.

3Recall the discussion of the EMH and the noise trader approach in section 1.2. This
section cites several empirical studies that support our statements.
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Moreover, the market model is assumed to be free of any arbitrage opportu-
nity.* If, as usual, Q denotes the set of all P-equivalent probability measures
that make the stock price process a martingale, Theorem 29 implies that Q
will be non-empty in equilibrium.

6.2.3 Agents

The economy is populated by a continuum of agents T = [0, 1]. All agents are
endowed with one stock so that the stock is in constant aggregate supply of
one. There are two types of agents, hedgers and non-hedgers. The proportion
a € [0,1] of the hedgers is constant and so is the proportion of the non-
hedgers, 1 — a. Expressions with respect to the hedgers are indicated by
the superscript H, whereas expressions with respect to the non-hedgers are
indicated by the superscript M. Whenever there is no danger of ambiguity,
these superscripts are omitted. Among agents there is perfect competition (or
price taking) as well as complete and symmetric information.” In particular,
there is complete and symmetric information regarding all relevant market
parameters, such as «a, P, etc.

In the subsequent analysis, we will treat the groups of the hedgers and
the non-hedgers as one single agent, respectively. Several assumptions are
imposed that guarantee that this kind of aggregation is possible. The single
representative agent of a group is then endowed with the aggregate endow-
ment of the respective group. However, we will nonetheless keep on using
the plural forms hedgers and non-hedgers to emphasize that there are many
small agents and not one or two ’big’ agents with the potential to influence
markets.

Hedgers

Every hedger dynamically hedges a given attainable contingent claim A, € A.
Explanations why a hedger follows a dynamic hedging program lie beyond
the scope of our analysis. However, one can observe in the marketplace that
many market participants follow dynamic hedging programs. Imagine, for
example, a bank or another financial institution selling customer tailored
derivative securities over the counter (OTC). Although no liquid markets ex-
ist for custom tailored products in general, the institution can hedge against
adverse market conditions. It can implement a dynamic hedging program to

4A description of these and other common model assumptions is found in section 1.1.

>Because of the assumption of perfect competition, the proportion a of the hedgers is
to be interpreted as a group of agents rather than as a large agent with market weight «,
as considered, for instance, in JARROW (1992) and JARROW (1994).
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synthetically replicate the state-contingent payoff of the sold derivative secu-

rities. At maturity the proceeds of the synthetic securities and the obligation

from the sold derivatives perfectly compensate each other. Throughout the

analysis we should keep in mind the picture of such a financial institution.
Four assumptions are imposed for the hedgers:

H.1. The aggregate state-contingent payoff As that the hedgers actually re-
alize by implementing their hedge programs satisfies,

Mg > A27

i.e., aggregate supply of the homogenous good at date n = 2 suffices
to cover the aggregate demand of the hedgers. All contingent claims
considered are European, i.e., they have a payoff at n = 2 and no

payoff before.

H.2. Hedgers can make a profit or loss which is denoted m = « - S} — Ap.
Heré®, m € |—(1 — a) - S}, - Si] and Ay denotes the n = 0 hedge costs
associated with A,.

H.3. There is no liquid market for the contingent claim As.

H.4. There is complete and symmetric information about As,.

Remark 9 Assumption H.3. helps to focus on the main issue of the chapter:
the impact of dynamic hedging on financial market equilibrium. The develop-
ment of a consistent pricing theory, as done for ezample in JARROW (1994)
or FREY (1996), raises far-reaching questions that are not addressed here.

The objective of the hedgers (= the representative hedger) is to ensure
that they can honor their obligations from selling contingent claims of type
A,, by implementing a dynamic hedge program. To achieve this, they choose
the admissible trading strategy that minimizes the costs Ay of dynamically

6The lower bound follows from,
> — (1—a) S} ,
N———
intial endowment of the non-hedgers
the upper bound similarly from,

T < 04-5’6

initial endowment of the hedgers
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hedging, or more precisely, of super-replicating the aggregate target payoff
Ay = a - Ay. Formally, they,
min Vo(¢)

¢€eT
St‘/2 (¢) > AV?a

The costs are then given by Ay = V(). The actual payoff achieved by the
hedgers is accordingly given as Ay = Va(¢).

If the contingent claim A, is attainable, this problem boils down to choos-
ing ¢ € T such that V5(¢) = As. Due to the absence of arbitrage, every
trading strategy ¢ € T that generates A, must yield the same hedge costs
Ag = V(o). In this case, the actual state-contingent payoff A, that the
hedgers achieve coincides with the aggregate target payoff ;{2.

In summary, the hedgers seek to achieve a complete hedge in the sense
that they end up with at least Ay(w) in all states w € €, i.e., Yw € Q :
Ay(w) > Ay(w). They choose the admissible trading strategy that minimizes
the associated hedge costs Ag. If the contingent claim A,, or equivalently
Ay, is even attainable, the hedgers achieve a perfect hedge meaning that
Vw € Q: Ay(w) = As(w). The costs associated with the perfect hedge are
then given by corollary 30 as Ay = E? [Ay] for all P—equivalent martingale
measures Q €Q. In fact, we will see in the next section that the market
model is complete so that every contingent claim is attainable. 'Real’ super-
replication will not become necessary until we analyze dynamic hedging in
an incomplete markets environment in chapter 7. Therefore, chapter 7 seems
to be the better place to discuss the concept of super-replication in greater
detail.

Important for the plan in this chapter is that the state-contingent payoff
A, that the hedgers actually achieve is independent of the equilibrium stock
prices at dates n = 0 and n = 1. Since the hedgers solve their problem by
backward induction, we can restrict our attention to their sub-problems at
n = 1 to verify that A, is indeed independent of the stock prices at n = 1.
Consider their problem, for example, at the u node,

omin gh(u) + py(u) - S (u)
#8(w).4(v)

s.t. @9(u) + @y (u) - 3 (uu) > Ap(uu)
(w) + d3(u) - Sj(ud) > As(ud).
For a fixed cost level of A\l, the iso cost lines are given as,
Ay = ¢(u) + @5 (u) - S} (u)
& ¢9(u) = Ay — ¢ (u) - S} (w).
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¢ (u)

112 (uu)s,

iso cost lines
optimal portfolio

¢9(u) = Ag(ud) — ¢3(u) - S3(ud)
e s

S 3u) = Ax(uu) — Gh(u) - 5} (un)

A:flin(u)
A2 (Ud)

Figure 6.1: Determining the cost-minimizing super-replication portfolio.

Figure 6.1 illustrates the linear problem for the case where Ay (uu) > As(ud).
Note that one can conclude by arbitrage reasoning that,

S1(u) €]5; (un), S (ud)[.

If either Sj(u) > S3(uu) or Si(u) < S3(uu), simple, risk-less arbitrage op-
portunities exist. In light of this, it is obvious why the cost-minimizing hedge
portfolio is exclusively determined by the intersection of,

99(u) = As(uu) — d(u) - S (uu),

and, B
() = Az(ud) — dy(u) - S5 (ud).

This, in turn, shows that the actual achieved state-contingent payoff is inde-
pendent of Sj(u). A similar argument applies to the problem at the d node
and contingent claims for which Ay(uu) < Ay(ud) holds true.

So far so good, but what about the initial endowment a-Sj of the hedgers?
It can either be greater or smaller than the necessary initial investment Ajg.
Or - which is unlikely, but possible - it can be exactly the same. In a general
equilibrium model one has to take this into account. By allowing the hedgers
to make a profit or loss m, as made precise in assumption H.2. above, we en-
sure the consistency of the equilibrium model in this respect. What happens
with 7 will be explained shortly. For the moment, to summarize matters,
the sequence of actions and decisions made over time by the hedgers is,
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The hedgers construct a security portfolio that
yields in combination with an appropriate trading strategy

" a n = 2 state-contingent payoff of at least Ay = a - Ay
The associated hedge costs A satisfy Ag = « - S}
S Security trading takes place

The hedgers adjust their stock and bond positions

They liquidate the portfolio: one share of the stock pays

n =2 | ny units of the consumption good, one unit of the bond

pays 1 unit of the good, the hedgers obtain a sum of Ay > A,

This chapter’s focus lies on contingent claims whose payoff is convex. As
has been shown in chapter 5, this class of contingent claims leads to positive
feedback dynamic hedging strategies. The main result of chapter 5 is also
applicable to the present market model.

Proposition 46 Let the state-contingent payoff Ay =a- Zg be attainable.
The dynamic hedging strategy (¢, )nec{o,2) associated with Ay is a positive
feedback trading strategy in the stock component (gb,}l)ne{o,l,g} if Ay is convex
in Sa. Formally,

Ay is convex in Sy = ¢y(u) > d1 > dy(d).

gbé(u) denotes the stock position set up by the hedgers at the u node atn =1,
¢5(d) denotes the stock position set up at the d node at n = 1 and ¢} finally
denotes their stock position set up at n = 0.

Proof. The proposition follows from proposition 45 for N =2. R

Non-hedgers

Contrary to the hedgers, the non-hedgers act rational in the sense that they
maximize their expected utility from consumption at the terminal date. For
these agents, the following five assumptions are imposed throughout this and
the next chapter:

M.1. The non-hedgers derive utility from terminal date consumption only.
M.2. The non-hedgers’ utility function,
v:Ry — R w— v(w),

is twice continuously differentiable. w denotes actual consumption at
date n = 2.
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M.3. The non-hedgers bear the losses or obtain the profits of the hedgers so
that their initial wealth is W = (1 — ) - S§ + .

M.4. wv(-) is of hyperbolic absolute risk aversion (HARA) type.

M.5. v(+) satisfies v'(-) > 0,2"(-) < 0, lim o'(w) = 0 and lirr}) v'(w) = oo.

v'(+) denotes the first derivative of v(-),v”(-) the second derivative of

v(+).

Remark 10 A sensible interpretation of assumption M.3. is that the hedgers
are firms owned by the non-hedgers. Assumption M.J. implies that we can
aggregate among non-hedgers since these utility functions are known to gener-
ate linear ENGEL curves. The HARA class of utility functions, for instance,
comprises those utility functions associated with CRRA or CARA. A de-
tailed description of these functions may be found in MILNE (1979, 411) or
MILNE (1995). Assumption M.5. ensures that the non-hedgers are strictly
risk-averse and that there are no corner solutions to the maximization prob-
lems. In fact, it further constrains the set of permissible utility functions.

Since the hedgers act as automata in our model, non-hedgers set equilib-
rium prices according to their dynamic optimization problem. More precisely,
equilibrium prices are set such that non-hedgers take security positions that
make markets clear. The non-hedgers’ problem (= the representative non-
hedger’s problem) takes on the form,

max Eg [v(13)] (6.1)

s.t. Wa(uu) = ¢5(u) + ¢y(u) - S5 (uu) (6.2)
Wa(ud) = ¢3(u) + ¢3(u) - S5 (ud) (6.3)
Wa(du) = ¢5(d) + ¢5(d) - S5 (du) (6.4)
Wa(dd) = ¢5(d) + ¢3(d) - Sy (dd) (6.5)

@) + ¢y - Si(u) = ¢3(u) + dy(u) - S (u) (6.6)
@) + ¢1 - S1(d) = ¢5(d) + ¢5(d) - S1(d) (6.7)
(1—a)-S;+7=¢)+¢]-S;. (6.8)

Wy(w) and Si(w) denote the wealth and the stock price, respectively, in
state w € Q at n = 2. ¢J(u) and ¢y(u) denote the bond position and stock
position, respectively, at the u node at n = 1. Similarly, ¢9(d) and ¢3(d)
denote these positions at the d node. ¢! and ¢1 denote the bond and the
stock position, respectively, at n = 0. (1 —«)- S} is the initial endowment of
the non-hedgers, expressed in units of the homogenous good, while 7 denotes
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the profits they receive from the hedgers or the losses of the hedgers they
have to cover. Furthermore, (6.6) and (6.7) express that the trading strategy
must be self-financing.

This problem can be condensed into,

max Ef [v(Va(9)] (6.9)
s.t. Vol(g) = W, (6.10)

where by definition WJ = (1 — «) - S§ + 7. This form of the problem is
rather suggestive. Non-hedgers choose the admissible trading strategy that
has initial costs of W and that maximizes their expected utility. Applying
martingale methods finally yields the dynamic problem of the non-hedgers
in the familiar static form,

max Eg'[v(112)] (6.11)
s.t. VQ €Q : EQ[Wo] = W7 (6.12)

Here, the budget constraint states that the expected value of the attainable
state-contingent consumption payoff W5 under any P—equivalent martingale
measure must equal the initial wealth of the non-hedgers.”

As an aside, note that we can also derive the problem of the non-hedgers
in an unconstrained form. The following lemma will be used in section 6.4.

Lemma 47 The problem of the non-hedgers (6.1)-(6.8) may also be ex-
pressed as the unconstrained problem,

arg max Ef [v(WJ + ¢ - AST + ¢5 - AS})], (6.13)
163

where g1 € R, ¢y € R? and AS} = (S-S |),n € {1,2}.
Proof. Note that for any ¢ € T,

Va(9) — Vao(9) = G2(¢)
& Va(9) = Vo(9) + Ga(¢)

holds. Note further that the bond price does not change over time so that
gains from trade can only be due to stock price changes AS}, n € {1,2}.

"Notice that we used the strict monotonicity of the non-hedgers’ utility function v(-)in
all formulations of their problem. Strict monotonicity of v(-) particularly implies that the
budget constraints are binding in each case.



6.2. THE MARKET MODEL 135

In other words, the available n = 2 wealth of the non-hedgers equals their
initial wealth plus gains from trading the stock,

Wy = WT + Ga(9)
= Wo= W7+ AS] + ¢y - AS;, (6.14)

where we used W = Vy(¢) and Va(¢) = Wa [see problem (6.9) and (6.10)].
Consequently, the non-hedgers choose ¢} € R and ¢; € R? such that they
achieve a state-contingent payoff W5 that maximizes their expected utility.
As can be seen by comparing problems (6.9) / (6.10) and (6.11) / (6.12),
choosing an admissible trading strategy is tantamount to choosing a state-
contingent payoff. We obtain,

arg max EOP (W5 + Ga(9)]
peT
= argmax Ef [v(WJ + ¢1 - AS] + ¢5 - ASy)],
1,03

as desired. See also, for instance, the discussion in section 5.1 of PLISKA
(1997). m

In summary, the sequence of decisions and actions of the non-hedgers is
listed below.

The non-hedgers invest into a security portfolio
n =0 | that, in combination with appropriate trading,
maximizes their expected n = 2 utility

Trading in the stock and the bond takes place

n=1 The non-hedgers adjust their stock and bond positions
To consume, they liquidate the security positions to
n—9 obtain 7, units of the homogenous good for each share
of the stock and 1 unit of the homogenous good for each
unit of the bond
Summary

To summarize matters presented in this section, we denote the present market
model by,
M ={(Q, p(Q),F,P),N =2,8" 1"},

where,

o O = {uu,ud,du,dd},
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e [ is the filtration generated by the state process (1,,)ne{0,1,2}

P is strictly positive for all w € €2,

N =2,

St ={(SF)nefo1,2) : k € {0,1}} where Vn : S =1 and

I* = [0, 1] with a proportion « € [0, 1] being hedgers and a proportion
1 — a being non-hedgers.

The section that follows will study general equilibrium in the market
model M™.

6.3 Equilibrium analysis

This section analyzes central issues related to general equilibrium in the case
where both hedgers and non-hedgers are active in the market model M“™.
Yet comparative static results are delegated to section 6.5.

Definition 48 A general equilibrium for the market model,
M ={(Q,p(Q),F,P),N =2,S" 1%},

1s a collection of an equilibrium stock price process as well as trading strategies
of the non-hedgers and hedgers,

(S&JnE{O,LQ}
(Dn Inefo1,2y (6.15)
(¢n )nG{O,l,Q}

S

such that,
e non-hedgers reach their optimum,

e hedgers achieve their desired hedge, i.e., a state-contingent payoff of
Ay > Ay atn =2, and

e markets clear,

G+ g =0 (6.16)
o+ o =1, (6.17)

forn € {1,2}. o™ and ¢* denote bond demand of the non-hedgers
and the hedgers, respectively, while gb,}ZM and gb}LH denote stock demand
of the non-hedgers and the hedgers, respectively.
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It is clear that there can only exist a general equilibrium if there exists a
solution to the non-hedgers maximization problem. This is due to the fact
that the non-hedgers effectively set prices in equilibrium. In what follows, we
want to establish existence and uniqueness of a general equilibrium. We de-
termine the shape of the general equilibrium stock price process as well. This
is mainly done by examining the problem of the non-hedgers. The existence
and uniqueness results, accompanied by the shape of the equilibrium stock
price, are found as Theorem 49 below. Afterwards, we derive the unique equi-
librium equivalent martingale measure whereby we indirectly show market
completeness.

Theorem 49 There exists a unique general equilibrium in the market model
M = {(Q, p(Q),F,P), N =2, S 1*}. The equilibrium stock prices satisfy,

gl _ EE [V (g — Ag) - 1]
" ER [V (ny — Ad)]

(6.18)

forn € {0,1}, and S3 = n, forn = 2. EF is the conditional expectation given
the information set F,,, v'(-) is the first derivative of the non-hedgers’ utility
function v(-), ny is the liquidating dividend of the stock at n = 2 and Aj is
the actual state-contingent payoff that the hedgers achieve at date n = 2.

Proof. Sub-section 6.7.1 contains the proof. B

Equation (6.18) will be central in the comparative statics analysis. It
turns out to be a powerful tool in evaluating the impact of dynamic hedging
on equilibrium prices in the market model M™.

Proposition 50 characterizes the unique P—equivalent martingale mea-
sure that prevails in equilibrium.

Proposition 50 In equilibrium, the unique P—equivalent martingale mea-
sure Q* is determined by,

P(w) /(5 — Ax(w))

Vw e Q: Q*(w)= B [0/ (1, — Ay)]

(6.19)

ns and As(w) denote aggregate supply of the homogenous good and aggregate
hedge demand in state w at n = 2, respectively.

Proof. See sub-section 6.7.2 for the proof. B
We provide the shape of the state price density as a separate result.

Corollary 51 The state price density for the economy takes on the form,

A U s 1)
YVwe: L (w)—EOP W — A
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Proof. The corollary follows immediately from the definition of the state

price density, L*(w)= %*(ES). |

In economic terms, an even more important corollary is the following.

Corollary 52 The market model M™ = {(Q, p(Q),F,P), N = 2,S' 1%} is
complete.

Proof. Together propositions 35 and 50 imply market completeness. B

Remark 11 We shall emphasize that corollary 52 only applies to the market
model M™ because agents have, by assumption, complete and symmetric
information about the equilibrium stock price process.

We also get,

Lemma 53 Forn € {0,1},

ST]i = Er? ’ [772]
_ EE [L*UQ]
EP[L+]

Proof. The lemma follows from Theorem 49, proposition 50 and corollary
51. 1

The situation where o = 0 should serve as the benchmark case. Since
this case is just a special case, one obtains from equation (6.18),

1 _ EY [v/ (1) - 1o _ 7Q
TR ) (620

Of course, Si* = 1), holds as before. The superscript ”*” indicates the bench-
mark case and Q** denotes the equilibrium martingale measure in that case.
Bick (1987), Bick (1990) and HE and LELAND (1993) show that (6.20) is
a necessary and sufficient condition for the stock price process (St*)nefo,1,2}
to be an equilibrium price process in a representative agent economy like our
benchmark economy. The primary focus of their analyses, however, is on
continuous time, complete markets settings.

The equilibrium stock prices at every single node of the binomial tree are

labeled,
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| first date ‘ intermediate date ‘ terminal date ‘

Sy (uu) = ng"
St*(u)
Sy (ud) = ns*
ST .
Sy (du) = ns"
St*(d)
Sy (dd) = n3”
| n=>0 ‘ n=1 ‘ n=2 ‘

The stock market clearing condition simplifies to,

¢1M:1

n Y

(6.21)

for n € {1,2}, with bond market equilibrium implied by WALRAS law if
(6.21) holds. This particular kind of equilibrium is commonly called a 'no
trade’ equilibrium. Prices are set such that the non-hedgers have neither
an incentive to buy nor to sell. Accordingly, bond demand equals zero.
The resulting equilibrium trading strategy of the non-hedgers is simply their
initial endowment, ¥n € {0,1,2} : (¢,,) = (1,0). Of course, 7 = 0 for a = 0.

We are now readily equipped to analyze the impact of dynamic hedging
on financial market equilibrium. However, before starting the analysis of
feedback effects, it seems helpful to stress the slightly unusual definition of
volatility used in this and the next chapter.

Definition 54 The volatility o of the stock price is defined as the difference
between the two possible n = 1 equilibrium stock prices, i.e., 0 = St(u)—Si(d)
for the economy with hedgers and o* = S*(u) — S1*(d) for the benchmark
economy.

Although this notion of volatility is not common, it lends itself in the
context of a two period binomial model. It is, for instance, the same notion
of volatility as in GROSSMAN (1988).

6.4 Some special cases

In this section, we explore a parameterized version of the market model
M = {(Q, p(Q),F,P),N = 2,S' 1%} to highlight several aspects of dy-
namic hedging in a framework like ours. Purposely, this section focuses on
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contingent claims that are, in a sense, borderline cases.® Numerical compu-
tations for more realistic contingent claims are delegated to section 7.6 of the
next chapter.

A popular belief is that positive feedback trading increases volatility in
imperfectly liquid markets. This belief is supported by numerous studies as
laid out in chapter 2. In similar vein, some argue that negative feedback
trading decreases volatility in such markets. However, without further qual-
ification these statements are mere conjectures and do not generally hold.
We are able to construct examples in the market model M“™ with which we
can refute both conjectures.” In particular, we show in this section, taking
as reference the volatility o* in the benchmark case a = 0, the following;:

e Dynamic hedging of a contingent claim with convex payoff leading to
positive feedback trading may both,

— increase (sub-section 6.4.2) and

— decrease (sub-section 6.4.3)
the volatility o of the stock price.

e Dynamic hedging of a contingent claim with non-convex payoff leading
to negative feedback trading may increase the volatility o of the stock
price (sub-section 6.4.4).

6.4.1 The example economy

Consider the market model M™ with the following parameter specifications:

n, € {12.1,10,10,8.264},
YVw € Q:P(w)=0.25and
v ¢ Ry =Rw—1 — e,
The non-hedgers exhibit CARA of 3 which can be easily checked by apply-
ing the definition of absolute risk aversion (definition 13). For illustration

purposes only, figure 6.2 depicts the utility function and its first and second
derivative.!?

8We should be a bit more precise and point out that our findings are robust for several
classes of contingent claims with non-zero measure. In other words, we do not consider
extreme cases with measure zero.
9What we actually do is showing that the two conjectures fail to hold generically.
10The current setting departs from the assumption that limO v'(w) = oo since the
ws

assumption is not necessary for our purposes here. However, because the exponential
utility function belongs to the HARA class of utility functions, we can simply aggregate
among non-hedgers.
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Figure 6.2: The utility function v(w) = 1—e~2" [solid line], its first derivative
v'(w) [dashed line] and its second derivative v”(w) [dotted line].

Using (6.20), one calculates for the stock prices in the benchmark case
a=20,

‘ first date ‘ intermediate date ‘ terminal date ‘
Sy (uu) = 12.1

ST (u) = 10.5444

S (ud) =10

Sg* =9.2814 o* =1.7671

Sa(du) =10

ST(d) = 8.7773

S%(dd) = 8.264
n=>0 ‘ n=1 ‘ n=2 ‘

Stock price volatility, measured as the difference between the two possible
stock prices at date n = 1, amounts to o* = 1.7671.
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6.4.2 Positive feedback increases volatility

The first case of dynamic hedging we examine is the dynamic hedging of a
Furopean call option. This call option is given by,

3if w=uwuu

lifw=ud
C2: = Rywe— lifw=du °

0if w=dd

Assuming that the hedgers’ market weight is 10% (a = 0.1), the equilibrium
stock prices, as determined by (6.18), are now,

‘ first date | intermediate date | terminal date |
Si(uu) = 12.1

SI(u) = 10.5856

Ss (ud) =10

Sg = 9.3291 o= 1.7901

S3(du) =10

ST(d) = 8.7955

S%(dd) = 8.264
‘ n=20 | n=1 | n=2 |

Volatility increases from o* = 1.7671 to o = 1.7901 or by 1.3016%.

To get a clearer picture of the forces that lead to these observations, we in-
troduce another approach to derive equilibrium stock prices. The subsequent
analysis is based on considerations regarding the non-hedgers’ stock demand.
In particular, we use the fact that the stock demand of the non-hedgers must
equal aggregate stock supply adjusted for the stock holdings of the hedgers.
Recall that we made similar considerations in a partial equilibrium context
in section 1.3. Formally, we work with the stock market clearing condition
(6.17). Doing so enables us to provide intuitive graphic illustrations of how
dynamic hedging perturbs the equilibrium price process.

From lemma 47, the stock demand functions of the non-hedgers at both
the u and the d node at n = 1 can be derived in explicit form. At n = 1, the
non-hedgers face the problem,

argmax ET [v(W) + ¢} - AS)]. (6.22)
Z

~1
At n = 1, W, is given since the optimal investment ¢, in the stock done at
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n = 0 cannot be revised at this date. Given E, Wy =WJ + (Ei -AS M
In light of (6.22), the first order condition for optimality is,

EP [0/ (W) + ¢k - ASY) - ASI] = 0. (6.23)

Depending on whether the actual node at n = 1 is u or d, (6.23) implicitly
defines the stock demand function ¢(.S) of the non-hedgers at the respective
node. We conduct the necessary calculations to derive the explicit stock
demand function for the u node only. Taking into account the parameter
specifications, one obtains from (6.23),

% . (% o3 (Wite(121-9)) | (12.1 — S))

_’_% ) (% ) 6_%.(W1+¢.(10—S)) ) (10 _ S)) -0

e [e‘%'(W1+¢'(12'1_5)) (121 — s)}
. [_67%-(Wl+¢>~(1075)) (10 — 5)}

6_%.(W1+¢-(12.1—S)) (]_2]. - S)
Sln | ——— ' -
e~ 3 (Wi+é-(10-5)) (10 — S)

N =t
=
o b= 2_21 ‘In [7(331__15)] | (u node)

As we see, the stock demand function ¢(S) is independent of the actual
wealth W, at n = 1. This is a well-known result for CARA preferences.'?
Similar calculations to those for the u node yield for the stock demand func-
tion at the d node,

2 (10— )
O= 17 [(S - 8.264)} ‘ (d node)

1Here, we benefit from the fact that expected utility maximizing agents act dynamically
consistent.
2Refer, for instance, to EICHBERGER and HARPER (1997, 25-29).
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Figure 6.3: Stock market equilibrium in the example at the u node at n =1
for a = 0.

Stock market clearing in the benchmark case prevails if (6.21) is satisfied.
In particular, this translates into,

2 (121-5)]

u node : ﬂ -In lm] = ]., (624)
2 (10-8) 1

d node : 1.736.111 [(5—8.264)] =1. (6.25)

From these conditions, one computes for the equilibrium stock prices at n = 1
S*(u) = 10.5444 and S{*(d) = 8.7773, respectively. These values are, as
desired, the same as those derived via the pricing equation (6.20). Conditions
(6.24) and (6.25) are illustrated in figures 6.3 and 6.4, respectively. Since the
stock demand functions of the non-hedgers are strictly decreasing (over the
relevant range) and satisfy 'nice’ limit properties, both equilibria are unique.

Similarly, the impact of dynamic hedging can be evaluated with the help
of the stock market clearing condition (6.17). To do so, however, one has to
calculate the stock demand of the hedgers first. The usual arbitrage argument
for complete markets yields,

C — Cy(ud
Vi) = o 2= G0
2™ — 12
3—1
12.1 -10
= 0.095238, (6.26)

= 0.1
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Figure 6.4: Stock market equilibrium in the example at the d node at n =1
for a = 0.

and,
Cg(du) — Cg(dd)
5 — 13’
1-0
10 — 8.264
= 0.05760. (6.27)

Hd) = o

= 0.1-

From condition (6.17),

2 ey =1
saM = 1-¢". (6.28)
At the u node, for example, the aggregate stock supply ’from the point of view
of the non-hedgers’, i.e., the right hand side of (6.28), is 1 — ¢35 (u) = 0.9048.

Using the stock demand function of the non-hedgers as derived above, the
stock market clearing condition (6.28) gives,

2 (121 -295)
: — - In|——=| =0.904
u node 51 nl S—10) 1 0.9048,
2 (10-29)
: . = 0.9424.
d node 1736 In l(5—8.264)] 0.942

These conditions determine S}(u) = 10.5856 and S}(d) = 8.7955 as the
n = 1 equilibrium stock prices. This is in line with the results obtained when
relying on (6.18).
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Applying the same method, one can evaluate the impact of dynamically
hedging a European put option defined as follows,

0if w=mwu

1if w=ud
Pl =Rew= 9 15—y
3ifw=dd

For a = 0.1, the stock positions of the hedgers at n = 1 are ¢35 (u) =
—0.047619 and @57 (d) = —0.11521, respectively. With everything else un-
changed, the n = 1 equilibrium stock prices are easily computed to be
St(u) = 10.5245 and S}(d) = 8.7419. They yield a stock price volatility
of o = 1.7826, which corresponds to a rise in volatility of 0.8771% relative to
the benchmark case.

6.4.3 Positive feedback decreases volatility

In contrast to a wide-spread belief, dynamic hedging of contingent claims
with convex payoffs can also decrease the underlying’s volatility. We can
construct a contingent claim that has a convex payoff and that nevertheless
decreases the volatility of the stock in the parameterized market model M“™.
Consider, for instance, the contingent claim,

39if w=wuu

4 ifw=ud
Ky =Ry 0 4 fw=du ’
4.1if w=dd

The necessary stock holdings of the hedgers to perfectly hedge the contingent
claim are ¢y (u) = —0.0047619 and ¢5”(d) = —0.0057604 when o = 0.1.
The stock market clearing condition (6.28) then implies that,

2 (12.1 - S)
de : — - In|———=| =1 .004761
u node 51 n{(S—lO)} +0.0047619,
2 (10 — S)
d node : -1 =1+ 0.0057604
node 13 M [(5—8.264)} i !

must hold in equilibrium. These conditions in turn determine the n = 1
equilibrium stock prices as being S} (u) = 10.5424 and S} (d) = 8.7755. The
stock price volatility is now o = 1.7669, which is slightly less than the stock
price volatility in the benchmark economy, ¢* = 1.7671. The remainder of
this sub-section is devoted to the explanation of this striking observation.
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Figure 6.5: The stock demand functions ¢(S) of the non-hedgers. The dashed
line corresponds to the u node, the solid line to the d node. In this figure, ¢
is denoted by p.

As pointed out in section 1.3, in a setting like the present one, we can
interpret the elasticity of the non-hedgers’ stock demand function as a mea-
sure for the liquidity of the stock market. In what follows, we argue that
the observed effect in regard to the convex payoft Ky can be explained by
differences in the stock market liquidity. Recall that the hedgers sell short

3H(u) = —0.0047619 shares of the stock at the u node to hedge the payoff
K. This leads to a stock price fall of 0.002 from 10.5444 to 10.5424. At the
d node, the hedgers sell short ¢35 (d) = —0.0057604 shares of the stock which
causes the stock to drop by 0.0018 from 8.7773 to 8.7755. Even though the
hedgers sell more shares of the stock short at the d node than at the u node,

2H(d) < @3 (u), the impact on the stock price is stronger at the u node.
Apparently, the stock market is more liquid at the d node than at the u
node. To verify this, we can draw on the elasticity of the non-hedgers’ stock
demand function. The elasticity e of their stock demand function around 1
at the u node is,

Ad 0.00476
e(u) = Asff(u) = i = 25.09,
S 10.544
whereas it is,
Ad 0.0057604
e(d) = - = 00B18 = 28.09,
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0 0.5 1 1% 2 25 3

Figure 6.6: The first derivatives of the stock demand functions of the non-
hedgers at the u node [dashed line] and at the d node [solid line]. In this
figure, p denotes ¢.

at the d node. Indeed, ¢(u) < €(d), indicating that the stock market is
actually more liquid at the d node than at the v node for quantities around
1.

As we see in the market model M, an important determinant of the
impact of dynamic hedging on equilibrium stock prices and the stock price
volatility is the liquidity of the stock market. Furthermore, it comes true
that a measure suited to describe the liquidity of the stock market in the
market model M™ is the elasticity of the non-hedgers’ demand function.

Since we are concerned with the impact of dynamic hedging on the stock
price only and do not need to compare different markets with each other, we
can also use a simpler measure as indicator for stock market liquidity. Such
a measure is the slope of the stock demand functions. In order to present
the two stock demand functions at n = 1 in a single diagram which makes
it possible to compare them directly, figure 6.5 displays the stock demand
functions of the non-hedgers in a diagram where ¢ is put on the horizontal
axis and S is put on the vertical axis. Figure 6.6 depicts the first derivatives
of these functions. A brief inspection reveals that the stock demand function
at the u node is steeper around 1 than the stock demand function at the
d node. This explains why in the case of the convex payoff K, volatility
decreases. The smaller shock caused by the hedgers at the unode,

02" (w)] < |62™ ()],
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Figure 6.7: Positive feedback hedging decreases volatility.

nevertheless causes a bigger price drop. This is due to the stock demand
function being steeper around 1 at the u node than at the d node. Figure
6.7 summarizes these statements in a single, schematic diagram.

6.4.4 Negative feedback increases volatility

The last contingent claim we consider in this section is,

41 if w =uu

4 ifw=ud
NEz: Q= Rywie 4 ifw=du
39iftw=dd

This contingent claim has a non-convex payoff. For a = 0.1, one can easily
check that ¢3(u) = 0.0047619 and ¢35 (d) = 0.0057604. Thus, there is
negative feedback. Omne computes for the stock market equilibrium prices
SHu) = 10.5464 and Sj(d) = 8.7791 yielding a stock price volatility of
o = 1.7673. As a result, o slightly surpasses the volatility o* = 1.7671 in the
benchmark economy. We see that negative feedback hedging may increase
the volatility of the stock price, thereby contradicting results of BALDUZZI,
BERTOLA, and FORESI (1995). The argument to explain this observation
parallels the one for the case of the contingent claim K, where volatility
decreased. As a matter of fact, the contingent claims K, and NK> are, in a
sense, put and call versions of the same contingent claim.
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Summary

Table 6.1 summarizes some of the main results derived in this section. In the
table, volatility in the benchmark case is normalized to 100%.

Table 6.1: Summary of results.

contingent
claim benchmark Cs B K, NK,
state

uu 0 3 0 39 | 41
ud 0 1 1 4 4

du 0 1 1 4 4

dd 0 0 3 41 | 39

| volatility [%] | 100 ] 101.30 [ 100.88 | 99.99 | 100.01 |

Considering all these findings, it is now clear that payoff convexity, or equiv-
alently positive feedback trading, is neither sufficient nor necessary in the
market model M“™ to observe an increase in stock price volatility caused by
dynamic hedging. To put it the other way round, positive feedback dynamic
hedging may both increase and decrease stock price volatility. Similarly,
negative feedback hedging may also both increase and decrease stock price
volatility where we omitted demonstrating the second part of this assertion.

6.5 Comparative statics analysis

In this section, we consider more general cases of contingent claims. We
particularly investigate typical European call and put options. To begin
with, assume that o €]0,1[ and that every hedger hedges one option out
of a set of permissible options. Suppose that this set contains I European
call options and J European put options. These options have different strike
prices but the same expiration n = 2. They satisty,

Vi e {1,..,1}:
ci o Ry, —» RS max{S; — K;,0}, (6.29)
mt > K>y (6.30)

in the case of the calls and,
Vi e {1,..,J}:
P} : R,y — R, S max{X; — S0}, (6.31)
' > X >, (6.32)
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in the case of the puts. Using S3 = 7,, (6.30) implies for the state-contingent

payoff of the i—th call with strike K,

nyt — K; ifw=wuu
i )0 if w=ud
Gz = 0 if w=du -

0 if w=dd

Accordingly, (6.32) implies for the state-contingent payoff of the j—th put

with strike X,

0 ifw=uwuu
; 0 if w=ud
J
P = 0 ifw=du -
X;—ni ifw=dd

Suppose now that a fraction p € [0, 1] of & hedges call options and that the
remaining fraction 1 — p hedges put options. The analysis may be simplified
by the use of, what we call, average strike options.'®

On the one hand, if «; € [0, p] represents the proportion of hedgers hedg-
ing call option 7 € {1, ..., I}, we must have Zfil a; = p - a. There exists an
average strike call option C, that satisfies',

I
Z%"C’;:P'a'ém
=1

with,

C, R,, — R,,S; — max{S; — K,0},
nyt > K > il

(6.33)
(6.34)

On the other hand, if o; € [0,1 — p|, with Z‘j]:l a; = (1—p)-a, is the

fraction of the hedgers who hedge put option j € {1, ..., J}, then there exists
an average strike put P, satisfying,

J
D aj-Pl=(1-p)-a-P,,
j=1

13Not to be confused with exotic options whose strike price depends on the average stock
price during a certain period of time.
14Simply define,

I i
Ty = Zi:1ai'02_
p-a
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with,

Py, : Ry, —»R,,S;— max{X — 55,0}, (6.35)
nyt > X > ndd, (6.36)

After all, we end up with a situation that we can manage conveniently.
As a matter of fact, a picture for the hedge activity in the economy emerges
that can be characterized in terms of the average strike options only. In
particular, the general case of the I + J different options is equivalent to a
situation where,

e a proportion p of the hedgers, i.e., a proportion p - a of the whole
population, dynamically hedges call options C's and where,

e the remaining proportion 1 — p of the hedgers, amounting to a propor-
tion (1—p)-« of the whole population, dynamically hedges put options
Ps.

For the comparative statics analysis, it seems helpful to consider two
cases, an extreme one and a general one,

(a) p=1and
(b) p € [0,1].

Both cases will be examined separately in sub-sections 6.5.1 and 6.5.2.

6.5.1 Dynamic hedging of calls

Consider first case (a), i.e., that all hedgers hedge call options of type Cs.
Importantly, market completeness implies that Cs is attainable in any case.
As the comparative statics analysis below reveals, dynamic hedging of such
call options causes the n = 0 price of the underlying stock to climb. The
intuition behind this is that a hedger has to take a long position in the un-
derlying to hedge the call option. This additional demand for the underlying
stock causes the price of the stock price to increase. Moreover, the observed
effect is stronger the higher the market weight « is of the hedgers.

Proposition 55 In the market model M, the higher the market weight o
of the hedgers is who dynamically hedge calls of type Cs, the higher is the
n =0 equilibrium stock price S§.

Proof. The proof is delegated to sub-section 6.7.3. H
An immediate consequence of proposition 55 is,
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Corollary 56 The stock price _Sé s higher in the presence of hedgers dy-
namically hedging calls of type Cy than in their absence, S§ > S§*.

Proof. Clear. &

Similarly, the additional stock demand by the hedgers at the u node at
n = 1 causes the stock price S7(u) to climb. It also turns out that dynamic
hedging of European calls leads to an increase in the stock price volatility,
which is more amplified the higher the aggregate hedge demand is. But first
we have,

Proposition 57 In the market model M“™ then = 1 equilibrium stock price
Si(u) at the u node increases with increasing market weight o of hedgers
dynamically hedging calls of type Cs.

Proof. Sub-section 6.7.4 contains the proof. B
An immediate corollary of proposition 57 is the increase in volatility.

Corollary 58 The volatility o of the stock price increases with increasing
market weight o of hedgers dynamically hedging calls of type C'.

Proof. It suffices to realize that according to (6.18), -251(d) = 0, and
therefore, 20 = 2(S}(u) — S{(d)) > 0. m
We also obtain,

Corollary 59 The volatility o of the stock price is higher in the presence of
hedgers with non-zero market weight o dynamically hedging calls of type C'y
than in their absence, o > o*.

Proof. From 22 = ( and the observation that according to (6.18),

Oa
Si(d) = St*(d), follows,

Si(u) = Si(d)
Si(u) = 8y7(d)
17 (u) = Sy7(d)

*
o Y

V

since Sj(u) > S1*(u). W

We can now draw on our knowledge about the unique, P—equivalent
martingale measure Q* to show that the hedge costs per call option Cs are
dependent on the market weight o of hedgers. More precisely, hedge costs
per call option rise with rising a.
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Proposition 60 In the market model M™, hedge costs Co per call option
contract Cy as given by,

Co=Eg [Cy),
increase with increasing market weight o of hedgers dynamically hedging calls

of type C. Q* denotes the unique equilibrium P — equivalent martingale mea-
sure associated with a certain o. Formally,

dCo

— > 0.
Oa

Proof. We know that in equilibrium the unique P—equivalent martingale
measure is provided in (6.19). Consider first the three states of the world
where the call option Cy expires worthless, i.e., the states w € {ud, du, dd}.
The martingale probabilities for these states are given as,

o PW) )
=B, — Ay

where,
E;[v'(n, — As)] = Puu) - (15" —a- (15 = K)) + P(ud) - o' (n3?)
+P(du) - ' (1j5") + P(dd) - v'(n3?).
Since W > 0, we deduce that for w € {ud,du,dd} : a%cgw) < 0.

This, in turn, implies that a%g‘u) > 0 because of Q* being a probability

measure satisfying > .o Q" (w) = 1.
In equilibrium, the hedge costs C|y of the call option C satisfy,

Cy = EF [0y
= Q' (uu)- (ny" —K).

Combining this with 8%2?10 > ( yields the assertion that the hedge costs for
a call option of type C, rise if the market weight o of the hedgers rises. B

This sub-section focused on call options only. Similar results can be
obtained for the case where both call and put options are hedged, which is
demonstrated in the next sub-section.

6.5.2 Dynamic hedging of calls and puts

This sub-section explores case (b) where p - o hedgers hedge calls of type C,
and (1 — p) - a hedgers hedge puts of type Ps. The aggregate payoff A, that
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is to be hedged is A5 = « - A, where,

' — K 0
- 0 0
i 0 X —ndd
p- (15" — K)
0
- |4 (6.37)

(1=p)- (X —ng’)
Market completeness implies that the hedgers can indeed achieve this state-
contingent payoff. These preliminary considerations which effectively ensure

that we can treat the group of hedgers as if every hedger would hedge the
same contingent claim As, now lead to,

Proposition 61 In the market model M", regardless of the actual value
of p € [0,1], the n = 1 equilibrium stock price Si(u) at the u node is non-
decreasing and the n = 1 equilibrium stock price Si(d) at the d node is
non-increasing in the proportion o of hedgers dynamically hedging calls of
type Cy and puts of type Py. For p > 0, Si(u) is strictly increasing in . For
p < 1, S}(d) is strictly decreasing in «.

Proof. See sub-section 6.7.5.

The intuition behind proposition 61 is that hedgers aiming at hedging
call options must buy shares of the stock at the u node at n = 1. Since
they simultaneously seek to hedge put options, they must sell shares of the
stock short at the d node at n = 1. For the non-hedgers to sell shares of the
stock to the hedgers at the u node, the stock price must rise. Similarly, the
stock price must fall at the d node to motivate the non-hedgers to absorb the
additional supply. As a result, volatility increases,

Corollary 62 Regardless of the actual value of p € [0, 1], the volatility o of
the stock price increases with increasing market weight o of hedgers dynam-
ically hedging calls C's and puts P-s.

Proof. Immediate consequence of proposition 61 and the definition of
volatility o. R
As an important sub-case of the last corollary, one has,

Corollary 63 The volatility o of the stock price is higher in the presence of
hedgers with non-zero market weight o dynamically hedging calls of type C
and puts of type Py than in their absence, or equivalently, o > o*.
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Proof. Clear. B

This finishes the comparative statics analysis. As seen, we were able
to verify that dynamic hedging of certain classes of contingent claims in-
evitably increases the volatility of the stock price in the market model M“™.
The present parameter setting includes the interesting case p = 0. In this
case, hedgers only hedge put options which can be interpreted as a portfo-
lio insurance economy, as considered in BRENNAN and SCHWARTZ (1989),
BASAK (1995) or GROSSMAN and ZHOU (1996). Our findings with regard to
the particular type of put option P, are consistent with those of BRENNAN
and SCHWARTZ (1989) and GROSSMAN and ZHOU (1996), while they clearly
contradict those of BASAK (1995).

The classes of contingent claims for which our results are unambiguous are
quite special. In particular, the contingent claims analyzed in this section
have a strictly positive payoff in only one state. If we allowed for more
general payoff structures, the results would be ambiguous.!® Therefore, in
our model, we must come to the conclusion that positive feedback dynamic
hedging, even if it is induced by rather typical contingent claims, does not
necessarily increase market volatility in imperfectly liquid markets. This is
in sharp contrast to the overwhelming evidence delineated in chapter 2.

6.6 Summary

In this chapter, we analyzed dynamic hedging in a general equilibrium frame-
work. We proved that under the assumptions of complete and symmetric
information a unique general equilibrium exists in the market model M™.
Furthermore, these assumptions ensured that the market model is complete.

Our findings indicate that dynamic hedging has the potential to influence
security prices considerably. We found that dynamic hedging of standard
European call and put options lets the stock price volatility climb in the
market model M“". Dynamic hedging of such options leads to positive
feedback trading so that it is intuitively appealing that it increases volatility.
Our result can also be considered rather robust insofar as we worked with
widely accepted utility functions and did not specify any other market model
parameter.

The potential of dynamic hedging to perturb the stock price process stems
from the general equilibrium approach. Such an approach implies imperfectly
liquid security markets. As a result, hedgers’ trading activity has an impact
on the stock prices set by the risk-averse non-hedgers in equilibrium. In

5In fact, our results would break down if we allowed contingent claims with strictly
positive payoffs in states other than uwu and dd. In chapter 7, this will become evident.
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contrast, this never happens if the stock price process is given exogenously,
such as in standard contingent claim pricing models.

It has often been conjectured that positive feedback trading generally in-
creases volatility in imperfectly liquid markets. At first sight and also in light
of our results regarding certain call and put options, this sounds reasonable.
Yet examples demonstrated that positive feedback trading may both increase
and decrease the volatility of the stock price. In a similar fashion, another
example revealed that negative feedback trading may increase the volatility
of the stock price.

It seems fair to conclude that, without further qualification, positive feed-
back trading is neither sufficient nor necessary to observe an increase in
volatility in a general equilibrium setting. Therefore, our results may con-
tribute to the resolution of the puzzle that arose when BAsAK (1995) found
that positive feedback trading decreases volatility in his model. Since our ex-
amples were based on a parameter setting where the non-hedgers had CARA
preferences, we can exclude that the crucial assumption leading to BASAK’s
(1995) findings is to be seen in the CRRA preferences. Moreover, our results
clearly support a conjecture formulated by BAsAk (1995) and quoted in the
introduction of this chapter that the net volatility effect of dynamic hedging
crucially depends on the specific market model parameters.

6.7 Mathematical proofs

6.7.1 Proof of Theorem 5.4
The proof comprises four steps:

1. We show that there exists a solution to the non-hedgers’ problem.
We verify that the solution is unique.

We derive the unique solution.

= W N

After all, we bring into play an equilibrium condition to verify the shape
of the equilibrium stock prices and to show that the found equilibrium
is unique as well.

Steps 3 and 4 are necessary for both date n = 0 and date n = 1.
Step 1: To begin with, recall that the problem of the non-hedgers is to,
P
e Eq [v(W2)] (6.38)

st. VQ € Q: E}[W,] = W, (6.39)
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Step 2:

Step 3:
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No arbitrage and Theorem 29 imply the existence of a solution to this
problem. We nonetheless want to sketch a proof. Uniqueness of the
solution is established thereafter.

No arbitrage and Theorem 29 imply that the set Q of P—equivalent
martingale measures is non-empty. As a result, the budget set as given
in (6.39) is bounded and closed, i.e., it is compact. Mathematically,
compactness of the budget set follows since Vw € Q,VQ €Q : Q(w) > 0.
This is ensured by the requirement that all martingale measures Q €Q
be P—equivalent. For a fixed QeQ and W] < oo, (6.39) becomes,

Q(uw) - Wa(uu) + Q(ud) - Wa(ud)
+Q(du) - Wa(du) + Q(dd) - Wa(dd) = W,

which should illustrate the argument. Now note that the utility func-
tion v(-) and the conditional expectation Ef[] are both continuous.
As a consequence, Ef [v(+)] is continuous as well. Since the objective
function is continuous and the budget set is compact, the WEIER-
STRASS Theorem implies the existence of a solution to problem (6.38)
and (6.39). See also chapter 3 in SUNDARAM (1996).

Next we turn to the uniqueness of the solution. Since the utility func-
tion v(-) is strictly concave, Ef [v(-)] is strictly quasi-concave which
implies according to proposition 2.10 in KREPS (1990) strictly convex
preferences. Strictly convex preferences, in turn, imply according to
proposition 2.11 in KREPS (1990) uniqueness of the solution to prob-
lem (6.38) and (6.39). Finally, the assumptions u}grolo v'(w) = 0 and

lim v'(w) = oo ensure that W € RY ..

To derive the optimal solution to the non-hedgers’ problem, it is helpful
to work with a martingale basis instead of the whole set Q. Therefore,
let QF = {QF,QF,...,QF} form a martingale basis. As before, P(w)
and QF (w) denote the probability for state w to unfold under the prob-
ability measure P and Qf, respectively. Rewrite the problem of the
non-hedgers as,

max Eg[v(dh + 3 - S5)] (6.40)
9,95 ER?
QP -
s.t. VQF € QP : Eg” [¢9 + ¢ - 53] = W (6.41)

Here we substituted for Wy = ¢ + ¢3 - Si. In view of the upcoming
need for partial derivatives and the fact that ¢3,¢§ € R? it seems
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worthwhile to write problem (6.40) and (6.41) in full detail,
¢3(U)7¢3$3§(U)7¢%(d) P () - o(65(u) + (1) - S ()
+P (ud) - v(¢a(u) + d3(u) - S (ud))
+P(du) - v(¢5(d) + ¢3(d) - S (du))
+P(dd) - v(d3(d) + ¢y(d) - Sy(dd))
s.t. VQF € Q7 :
Q7 (uu) - (¢5(u) + s (u) - Sa(uw))
+QB(ud) (¢2(u) + a(u) - S3(ud))
(
2

S

)5
+Q (du) - (¢2(d) + ¢y(d) - S3(du))
+Qj (dd) - (¢5(d) + ¢3(d) - S(dd)) = Wy

One obtains the LAGRANGIAN function,
L(¢5, ¢3,A) = B [v(¢3 + b3+ 53)]
J
R T\
3N (W —Eg (68 + 03 S3]).
j=1

The first order conditions, which are both necessary and sufficient here
are,

(52 = Pluw) - v/ (93(u) + d3(u) - S3(uu)) - S (uu)
+P(ud) - v/ (¢3(u) + ¢ (u) - Sy(ud)) - S3(ud)
)

=50 [QF (wu) - SHuu) + QF (ud) - S(ud)] =0
(6.42)
st = P(du) - v'(95(d) + ¢y(d) - S3(du)) - S3(du)
+P(dd) - v'(¢3(d) + ¢3(d) - S3(dd)) - S}(dd)
|~ 27N [QF(du) - SY(du) + QP (dd) - Sy(dd)] = 0
(it = Plun) - v'(¢3(u) + $y(u) - S3(uu))
+P(ud) - v/ (¢9(u) + ¢3(u) - S (ud)>
=37 [QP(uw) + QP (ud)] =
(6.43)

st = Pldu) - v'(65(d) + ¢(d) - S5 (du))
+P(dd) V'(¢2(d) + () - 51(ud))
\ —ZJ L - [QF(du) + QP (dd)] =

{ Vi 2 —wg—EQg5+eh-si)
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Step 4:

CHAPTER 6. DYNAMIC HEDGING IN COMPLETE MARKETS

Adding up the first order conditions for the stock, as provided in (6.42),
yields,

J J
; Q7
Ef [0/(¢9+5-5)-S3] =Y N -Eg' [S3] =) NS5 (6.44)
p =1

Doing the same with the first order conditions with respect to the bond
- this time found in (6.43) - yields,

Ef [V(65+¢5-S3)] =D\ (6.45)

Jj=1

Dividing (6.44) by (6.45), one eventually arrives at an explicit expres-
sion for the stock price S,

E§ [v/(¢3 + d3 - S3) - S3]
Ef [v/(45 + ¢3 - S3)]
Ef [v' (Ws) - S5

Ef [v' (Wa)]

Si=

= Sy =

The last little step is to realize that in general equilibrium the aggregate
endowment 7, at n = 2 has to be divided between the two groups of
agents,

Ny = Wo + Ao, (6.46)

where W5 denotes the non-hedgers’ aggregate payoftf at n = 2 and A,
denotes the hedgers’ aggregate payoff. Due to strict monotonicity of
the utility function v(-) it is clear that the non-hedgers consume all
their available n = 2 wealth. In view of (6.46), the n = 2 wealth of the
non-hedgers is,

Wy =mn, — Ay,

where n, — As > 0 by assumption. It is worth pointing out that A,
is unique and independent of the equilibrium prices at dates n = 0
and n = 1 as shown in sub-section 6.2.3. Hence, the unique n = 0
equilibrium stock price must satisfy,

Sé _ E(I)) [V (ny — Ag) - 772]’
EOP [V (ny — Ag)]

where 7, replaces S3. This completes the proof for n = 0.
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Step 3’: The proof for n = 1 is easier. Consider, for instance, the problem of
the non-hedgers at the u node,

ol ET, [0(¢5(u) + ¢(u) - S5)]
st @(u) + da(u) - Si(u) = ¢ + ¢ - Si(u).

EF, denotes conditional expectation under P given the information set
JF1 at the u node at n = 1. Fortunately, expected utility maximizing
agents decide dynamically consistent. Since the non-hedgers have this
convenient characteristic, we can be assured that this problem delivers
the same optimal values, ¢3(u) and ¢5(u), as those already determined
by (6.40) and (6.41). And so we solve the agents’ problem at the u node
knowing that it yields the same optimal values for ¢5(u) and ¢3(d) as
the problem at n = 0. Again we determine the first order conditions
from the corresponding LAGRANGIAN function,

s — e [P(un) - v(#(u) + 6b(u) - S}(uw) - Sh(un)
+P(ud) - o/(93(w) + @3(u) - S3(ud)) - S}(ud)] — X~ S}(u) =0
2 — b [Pluw) o (63(w) + 0b(u) - Sh(uu))
+P(ud) - v'(¢(u) + ¢3(u) - S}(ud))] — A =0
{ 2 = 99w + B3(u) - S1w) — & — 61 - SHw) £ 0
Dividing the first condition by the second eventually yields,

1 . E{’u [U/ (W2) : 772]
51 = g T (W)

Step 4: After substituting for Wy = 1y — As,

1 _ Efu [V (ny — Ag) - 1)
S0 = TP (o~ A

as desired.
The calculations to prove the assertion for the d node are very similar so

we can omit them. This completes the proof. B

6.7.2 Proof of proposition 50

The proof consists of two steps. First, we verify that Q*is a P—equivalent
probability measure. Second, we prove that Q* is a martingale measure.
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Step 1: Note that (6.19) indeed defines a P—equivalent probability measure,
i.e., it satisfies,

Vw € Q: Q*(w) >0 and

> QW)=

weN

The second property is obtained by straightforward manipulations,

Pw)-v "2‘}—142

el
_Ef[v'(n, A2 1,
EF [v'(n, Az)]

where 74 and Ay(w) denote aggregate supply of the homogenous good
and aggregate hedge demand in state w € €2 at n = 2, respectively.

Step 2: It remains to verify that Q* as defined in (6.19) is indeed a martingale

measure. To do so, we have to show that EQX [n,] = S as well as
EY [,] = S!. And fortunately,
EQ* 7] = Z Q" (w
weQ
—A
weN 2

=5 lEa’v[«(ffnf im | ”2}

_ E(IJD [U/(Uz — A2) ’ 772]
Ef [v'(ny — A2)]
= Sé,

as desired. The last equality follows from Theorem 49. We demonstrate
the martingale property for the u node at n = 1 only.

) . w
wegud}w Q- (ud) "
~ P(w)v/(ng — Aa(w)
> [Eop[v’(nz—flz)]

we{uu,ud}
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(
Ef [v'(ny — Az)]

. (P(uu)-v’(ngu — Ay(uu)) + P(u s
_ P(w)-v'(ny — AY) "
B we{%;ud} P (uu)-v' (4 — As(uu)) + P(ud)v'(n4d — As(ud )

_ Plun)v'(n5" — As(uw)) - ng* + P(ud)-v' (5
P (uu)v'(n¥ — Ay(uu)) + P(ud)-v' (nye A2

_ E{’u[v/mz — Ay) '772]
E})u [/U/(UZ - A
S

EY, denotes conditional expectation given the information set Fj at
the u node at n = 1. The last equality again follows from Theorem
49. 1

6.7.3 Proof of proposition 55

Using the general pricing equation (6.18) and recalling that n4* > K > nyd
the n = 0 equilibrium price of the stock is,

EOP [UI(% — Q- 62) : 772}

So = = (6.47)
" EP[v(n—a-0y)
where
Ef [V'(ny—a-Ca)my] = Pluw)-v'(ns* —a- Caluu)) - ny"

+P(ud) - v'(n3?) - m3?
+P(du) - v'(n§") - n3"
+P(dd) - v'(n§?) - n3?,

and,
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Differentiating (6.47) with respect to « delivers,
8_53 . EEE [U’(Uz - a'62) : 772}
90 = 8o BE [v(n—a-Co)
[Puw) v (13" — o~ Cafuw) - 3" - (~Cafuw)] - EF [/, — - )]
BE [/, — - Ca)]”
CEP [v(n,—a-Ta) -] - [Pluw) - /(5" — - Tpluw)) - (~Tfu)]
EY [v/(n, — o Cs))’

>0 >0
7\

P(uw) - P(ud) - v/ (%) - " (0" — o - Ca(unr)) - (—Cip(u)) - [ — 124]
EP [v/(n, — - Cy)]’

A A\
7

 Plu) - P(du) o/ (1") - v (1" — - Coun)) - (~Cofu) - " — 3]
EF [v'(n, — '62)}2

>0 >0

A\ A\

s ~\ 7

+P(UU) - P(dd) - v'(n3?) - 0" (15" — a - Coluw)) - (=Cs(un)) - 15" — 157
Ef [Ul(nz — Q- 62)]2

> 0.

Consequently,% > 0 implying that the n = 0 equilibrium price S} of the
stock increases with increasing market weight « of the hedgers. This proves
the proposition. ®

6.7.4 Proof of proposition 57
According to the general pricing equation (6.18) and n4* > K > n%?, the
n = 1 equilibrium stock price S} (u) at the u node is,
Sl(u) _ Ef’u, [UI(UQ — Q- 62) ’ 772}
' ET, [v/(n, —a- Cy)]
saopag  [Pluw) v (03" — a - Coluw)) -n5* + P(ud) - o' (157) - 1]
et * [P () v (05" — a - Ca(uu)) +Plud) - o' (n57)]

because the only strictly positive payoff of the call option occurs in the best
state. Differentiating this expression with respect to «, one gets,

S} (u)

Oa

Y
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S V0" — - Ca(uw)) - (~Ca(uu) - 13| - BE, [v'(ny — o C)]
EY, [v/(n, — - Cy)]”
EE, [v'(n, — - C2) - ma) - | prsigey - ¢ (08" — @ - Ca(un)) - (~Ci(un))|
N EY [U’(nQ —a- 62)]2
= E}, [V(ny—a-Cs)-n -

P(uu) . o B
P(uu) + Plud) (n3" — o - Caun)) - (=Ca(uu))

>0

(5" - EL, [V'(ny — - Co)] —Ef, [V'(ny — - Ca) - y)) (6.48)

/

To decide upon the sign of (6.48), it is necessary to check the sign of the
last term in parentheses,

ny" - E}Du [UI(% — Q- 62)} - Eib [Ul<772 - ’62} : 772}
1
(uu) + P(ud)

[Pu) o/ (" — - Calun) - 5 + Plud) -/ (n3”) - m"
~P(uu) o' (5" — - Coluu)) - 15" — P(ud) - v’ (5") - n]
1 ud
= Plau) 1 Plug) L) v (%) - 1" s> 0 (6.49)

>0

Finally, (6.49) in combination with (6.48) implies % > 0. The stock

price S} (u) increases with increasing market weight « of hedgers dynamically
hedging calls C'>. B

6.7.5 Proof of proposition 61

From the proof of proposition 57 and (6.37), one can conclude that in case
(b),

St (u)

Oa

holds. Equality is observed if p = 0. This proves the first part of the
assertion. However, we additionally have to determine the effect on the
stock price S}(d). It is clear that for p = 1, %ga(d) = 0. Therefore, assume for
the moment that p < 1. According to the pricing equation (6.18) and the
assumption 7% > X > ndd the n = 1 equilibrium stock price S} (d) at the d

> 0,
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node is,

1 _ Efd [U,(nz - Z2) '772]
S = TR Tl —a - A)
W [P(du) - v' (n3") - 15" + P(dd) - v (5" — o - Ag(dd)) - 5]
m [P(du) - v (ng*) + P(dd) - v/ (nd? — a - Ay(dd))] ’

because a strictly positive payoff occurs in the dd state only [see (6.37)]. EF,
denotes conditional expectation given the information set F; at the d node
at n = 1. Differentiating this expression with respect to « yields,

9S1(d)
Oa
el - O — o Ap(dd)) - (~y(dd) - ) - B [V (ny — - )]

E}Dd [U'<772 -« 'Zﬂ}z
EE, [v/(1, — a - Aa) - 1] - | sammagy - V(08 — o Ax(dd) - (~Aa(dd))|
- — 12
E?d [U/(% —a A2)]

—2

= EF [v/(ny — - A)]
P(dd) o -
PGy + oy V0 o Aaldd)) - (= Aa(dd)

~

/

>0

: (Ugd : E?d [UI(UQ — Q- ZZ)] - E{)d [U,(% - 'Z2) : 772])
The term in the last line has negative sign, as one can see from,

s’ By [v'(ny — o Ap)| — BV, [v/(n;, — - Ay) - 1py]
= P(dw) : Pl [P0 () " + P(dd) - of (1 — e Ax(dd)) - !
—P(du) - o' (n3") - n5" — P(dd) - ' (115" — - As(dd)) - 5]

P(du) ' dd _ du
= P pag VR e <0

<0

Everything taken together, this 1mphes < 0 for p € [0,1]. In sum-
mary, the stock price S;(u) is non- decreasmg in a, whereas the stock price
St(d) is mon-increasing in a. For p > 0 the stock price Si(u) is strictly

increasing in «, and for p < 1 the stock price Si(d) is strictly decreasing in
o. i



Chapter 7

Dynamic hedging and general
equilibrium in incomplete
markets

7.1 Introduction

As seen in chapter 2, the impact of dynamic hedging on financial market
equilibrium has become a growing area of research in financial economics.
One feature that such studies typically have in common is that markets are
complete a priori and remain so under a common knowledge assumption re-
garding the hedging activity in the marketplace. As a crucial implication,
dynamic hedging strategies are uniquely determined. In other words, hedgers
act as automata in complete markets, only executing a predetermined hedge
program. This was also the case in the previous chapter. Since every contin-
gent claim was attainable in the market model M™ hedgers could always
achieve a perfect hedge at given costs.

In incomplete markets, dynamic hedging strategies are not uniquely de-
termined like in complete markets. Because perfect hedges are no longer
feasible, a hedger needs to impose some kind of objective function in order to
decide upon the optimal hedge strategy. Several authors have developed dif-
ferent approaches to the dynamic hedging of derivatives in incomplete mar-
kets. One example is the quadratic hedging approach where the expected
quadratic deviation of the hedge portfolio’s payoff from the derivative’s pay-
off at maturity is minimized.! Another one is the approach which seeks to
minimize the expected loss from hedging.? When introducing the hedgers

'For example, FREY (1997) provides a brief introduction to this approach.
2See, for instance, CVITANIC (1998).
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in the last chapter, we required that they implement the admissible trad-
ing strategy that minimizes the costs of super-replicating a given contingent
claim. Yet in the last chapter this requirement boiled down to perfect replica-
tion because the market model in chapter 6 was complete in equilibrium. In
this chapter, super-replication will play a central role because perfect hedges
are infeasible in general. Recently, the super-replication approach to hedg-
ing contingent claims in incomplete markets has become very popular in the
theoretical literature. It is, for example, extensively discussed in chapter 5
of KARATZAS and SHREVE (1998).3

The analysis of dynamic hedging strategies in a general equilibrium frame-
work where markets are incomplete by assumption has not received any at-
tention so far. This is somewhat surprising since there is no doubt that
incomplete markets draw a more realistic picture of the world than complete
markets. Furthermore, the theory of incomplete markets presently repre-
sents one of the most active fields of research in financial economics.? Trying
to close the apparently existing gap, we investigate in this chapter dynamic
hedging in a general equilibrium framework with incomplete markets. Tech-
nically, incomplete markets imply that there exists a non-empty subset of
the set of all contingent claims, elements of which are not attainable via a
self-financing trading strategy. We embed the analysis in a discrete time,
discrete space general equilibrium framework, which is essentially a variation
of the market model M®™ as proposed in chapter 6.

The chapter is structured as follows. We explore the market model in
section 7.2. Section 7.3 derives optimal super-replication strategies for Euro-
pean call and put options. The analysis of general equilibrium takes place in
section 7.4. Section 7.5 carries out the comparative statics analysis while nu-
merical computations are conducted in section 7.6. Section 7.7 summarizes
the main results and section 7.8 provides proof of some results found in the
other sections.

7.2 The market model

The market model in which we embed the analysis in this chapter is a mod-
ification of the market model M of the last chapter. In a sense, it is a
generalization of that market model since it is characterized by market in-
completeness. This section outlines the main differences between the market
model M“™ and the market model which the analysis in this chapter is based
on.

3Refer also to CVITANIC (1997), CVITANIC, PHAM, and Touz (1997) or FREY (1999).
4MAGILL and QUINZIT (1996) give an overview of recent advances.



7.2. THE MARKET MODEL 169

The following assumptions remain in force: perfect markets, perfect com-
petition, complete and symmetric information, one homogenous consumption

good.

7.2.1 Primitives

Consider the market model M = {(Q, p(Q),F,P),N = 2,S' 1*} where
uncertainty resolves according to the fundamental state process (1,,)ne{0,1,2}
Vn : n, > 0, that has now an event tree representation of,

first date | intermediate date | terminal date

Ui

Mo

We assume,
d d d dd
Myt > e > et 2yt >y >y

Correspondingly, the state space enlarges to = {uu, um, ud, du,dm, dd}.
Even though six states w of the economy are now possible at the terminal
date, there are still only two states possible at the intermediate date. The
terminal nodes {uu, um, ud} may only be reached from the u node at n =1
while the nodes {du,dm, dd} may only be reached from the d node at n = 1.
This ensures that we can directly compare the comparative statics results
regarding stock price volatility of this chapter with those obtained in the
previous chapter. The filtration according to which agents learn information
is F' = (Fn)nefo,1,2}, Where now,

Fo = {@, Q},
Fi = {9, {uu,um,ud}, {du,dm,dd},Q} and

As in the market model M™ the probability measure P is strictly positive
for all w € Q, e, Vw € Q : P(w) > 0. Altogether, this defines the new
filtered probability space (€2, p(£2), F, P) which with we will work.
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7.2.2 Securities

The stock price process (S%)ne{o,lz} is adapted to the new filtration [F. There-
fore, it evolves as displayed below.

| first date | intermediate date | terminal date |
Sy (uu) = ny*
Si(u) S (um) = ng™
Sy (ud) = ns*

So
S5 (du) = 15"
Si(d) S3(dm) = ng™
S3(dd) = ng’
| n=>0 | n=1 | n =2 |

We assume that the market model is free of arbitrage opportunities which
ensures by using Theorem 29 that the set Q of P—equivalent martingale
measures will be non-empty in equilibrium.

7.2.3 Agents

There is still a continuum I = [0, 1] of agents which divides into two groups,
hedgers with market weight a € [0, 1] and non-hedgers with market weight
1 — a. With respect to these groups of agents all assumptions made in chap-
ter 6 remain in force. In particular, hedgers dynamically hedge contingent
claims. They implement the admissible trading strategy that minimizes the
costs of super-replicating a given contingent claim that they have sold OTC.
This procedure was perfectly successful in the setting of chapter 6, in the
sense that every contingent claim was attainable via an admissible trading
strategy. This is due to the market model M“™ being complete under com-
plete and symmetric information.

A somewhat different picture will emerge for the present market model.
We will argue that it is incomplete by construction. As a result, there are
contingent claims that are not attainable via admissible trading strategies so
that perfect hedges are infeasible in general. However, if a perfect hedge is
infeasible, it might be nonetheless possible that a complete hedge is feasible.
By complete hedge we mean that there exists an admissible trading strategy
that super-replicates the contingent claim.’ Section 7.3 is devoted to issues

We should note that we use the expression dynamic hedging for trading strategies
that generate perfect hedges as well as for those that generate complete hedges. In that
sense, perfect replication and super-replication are just special cases of dynamic hedging
strategies.
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related to super-replication.

Summary

The new market model is denoted,
M™ = {(Q, p(Q),F,P), N =2,S" 1},
where,

o O = {uu,um,ud,du,dm,dd},

IF is the filtration generated by the state process (1, )nef0,1,2}5

P is strictly positive for all w € €,

N =2,

St = {(SF)neqo,1,2) : k € {0,1}} where Vn : S? =1 and

[« = [0, 1] with a proportion « € [0, 1[ being hedgers and a proportion
1 — a being non-hedgers.

7.3 Super-replication strategies

In this section, we examine the hedgers’ optimal super-replication strategies
in detail. We first show in sub-section 7.3.1, that the optimal strategies are
generally stock price-dependent and that there can be, in principle, an infinite
number of solutions. The analysis proceeds then by deriving and character-
izing the optimal super-replicating strategies for two particular contingent
claims.

The first contingent claim, a European call option, is given by,

Cy: Ry, —»R,,S; — max{S; — K,0} (7.1)
where ny" > K > ny™. (7.2)

The second contingent claim of interest is a European put option which is
given by,
Py:R,, — R, S)— max{X — S}, 0} (7.3)
where n§™ > X > n4e. (7.4)

The corresponding super-replication strategies are derived and characterized
in sub-section 7.3.2. After having tackled equilibrium issues in section 7.4,
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section 7.5 conducts the comparative statics analysis in the market model
M when hedgers hedge these particular options.

The notation used in the sequel is in accordance with the one of chapter
6.

7.3.1 Determinacy of optimal strategies

First note that the hedgers solve their super-replication problem through
backward induction. To make our argument in this sub-section, it suffices
to consider the sub-problem of the hedgers only at the u node at n = 1.
For a general contingent claim A, the super-replication sub-problem of the
hedgers at the u node is,

min  ¢5(u) + dy(u) - S (u) (7.5)
B9 (w),¢5 (u)
st ¢9(u) + gh(u) - Sy > Ay, (7.6)

Here, we have defined A, = a - A,. (7.6) translates into,

B > Ap(uw) — 63(u) - S}(un), (7.7)
A = Ayfum) - gh(u) - Shum), .
) > Ay(ud) — 6h(u) - Sh(ud) (79)

For the sake of simplicity, we assume that As(uu) > Ay(um) > Ay(ud) = 0.
Any other relationship would be fine as well, but this one allows us to make
our argument as simple as possible. In the following, we will analyze problem
(7.5) and (7.6) graphically. We will conduct the analysis in a diagram where
#%(u) is on the vertical axis and ¢3(u) is on the horizontal axis. For fixed
super-replication costs 21, the iso cost lines in such a diagram are determined
by, R
$o(u) = A1 — dp(u) - Sy (u).

Figure 7.1 illustrates problem (7.5) and (7.6). As it becomes obvious, two
basic cases are possible. There can be one unique solution or infinitely many
solutions. The latter case occurs if Sj(u) = Si(um). The former case if
St(u) # S3(um). Depending on whether S (u) > S3(um) or St(u) < Si(um),
the cost minimizing portfolio is determined by the intersection of,

$5(w) = As(uu) — ¢y(u) - S5 (uu),

and,

95(u) = Ay(um) — gy(u) - S5 (um),
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¢a(u)

() = Ay(un) — $3(u) - Shluu)
() / () = Aa(um) — 63(u) - Sh(um)
N/ ) =~ - Shua)

Az(um)~
- Olq‘\‘\\ 1
—= ‘~-,_‘\\\\:\\\ 1 $a(u)

Figure 7.1: Derterminacy of the optimal solution.

in the former case and by,
$5(u) = As(um) — ¢y(u) - Sy (um),

and,
$(u) = —¢(u) - S5 (ud),

in the latter case. For Sj(u) > Si(um), the optimal portfolio is found in point
O;. Similarly, if S} (u) < S3(um), the optimal portfolio is found in point Os.
If, however, Si(u) = S3(um) holds, then all points on the line connecting O,
and O, are optimal. The last case is, of course, not generic, but nonetheless
possible and plausible.

If the contingent claim that the hedgers super-replicate has a different
payoff structure, it might also be that the optimal strategy becomes inde-
pendent of the stock price at date n = 1. Since this chapter, in the spirit
of the last chapter, draws on differential calculus in the comparative statics
analysis, it is tedious to consider multiple optimal solutions. Fortunately, the
next sub-section will reveal that the optimal super-replication strategies for
the call described by (7.1) and (7.2) and the put described by (7.3) and (7.4)
are independent of the stock prices prior to n = 2. In the end, this partic-
ular feature will guarantee that there is a unique general equilibrium in the
market model M*™ when hedgers are obliged to hedge only these options.
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7.3.2 Derivation of optimal strategies

In this sub-section, we will first demonstrate that neither the call option nor
the put option are attainable in the market model M. We will then derive
the optimal super-replication strategies. The subsequent analysis presumes
that there is a unique equilibrium stock price process, a result we will derive
shortly.

A brief look at (7.1) and (7.2) reveals that the only strictly positive payoff
of the call option occurs in the state uu leading to a state-contingent payoff
of,

([ Si(uu) — K for w = uu
0 for w = um
— 0 for w = ud
Ca(w) = 0 for w =du -
0 for w = dm
\ 0 for w = dd

The inspection of the replication sub-problem at the u node at n =1,

1 mst\ [ Salww) — K
Go(u)- [ 1 | +oa(u)- | m™ | = 0 : (7.10)
1 nyd 0

lets one conclude that it has no solution. This is because of the assumption,
[ um ud
My > Mg >y -

As a consequence, the call option C5 is not attainable.
Considering (7.3) and (7.4), one sees that the only strictly positive payoff
of the put option P, occurs in state dd,

( 0 for w = uu
0 for w = um

— 0 for w = ud
Pa(w) =4 0 for w = du
0 for w =dm

| X —S3(dd) for w=dd

The corresponding replication sub-problem at the d node at n = 1 for the
put option is,

1 n 0

Go(d)- | 1 | +éa(d)- [ m™ | = 0 : (7.11)
1 15 X — 5;(dd)
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It is easy to check that this sub-problem has no solution under the assump-
tion,
d d dd
ny" > mny™ >y’

Thus, hedgers can neither perfectly hedge the call option Cy nor the put
option Py. We will show, however, that they can super-replicate the options.
As we will see shortly, this result is general insofar as every contingent claim
is super-replicable in the market model M®™. A proof of this claim is found
in the subsequent section. The remainder of this sub-section is devoted to
the derivation of the cost-minimizing super-replication strategies.

Call options

Suppose first that all hedgers hedge European call options of type Cs, and
define the aggregate target payoff of the hedgers by Cy = a - C5. At the d
node at n = 1, the hedgers face the replication sub-problem,

1 nd ' 0
o) | 1 | +ea(d)- | m™ | =] 0
1 ndd 0

As a result, they simply hold the "zero portfolio’, ¢9(d) = 0 and ¢5(d) = 0,
there.

The hedgers’ problem at the v node at n = 1 is not as trivial as at the d
node. Since the replication sub-problem (7.10) has no solution, hedgers must
super-replicate the call option at this node to ensure that they are able to
honor their obligations from writing the call options. Formally, the hedgers
face the problem of,

L min () + (- Si

s.t. ¢5(u) + ¢y(u) - S} = Cb.

More detailed, their problem is to,

i @3(w) + 6b(u) - SH(w) (712

¢35 (u),¢3(u)

s.t. @) + ¢y - Sa(uu) > Cg(uu) (7.13)
() + dy(u) - Sy(wm) > 0 (7.14)
$o(u) + ¢5(u) - S3(ud) > 0. (7.15)

Problem (7.12)-(7.15) can easily be solved by graphic means. It seems
convenient to conduct such an analysis in a diagram where we, as above,
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P (u)
L dh(u) = Co(un) — py(u) - S3(un)
62 (uu)c 3
Cmin L iso cost lines

optimal
portfolio

- py(u)

TTeel “Po(u) = —y(u) - S3(ud)
03w = ~6}(u) - Sh(um)

Figure 7.2: Minimizing super-replication costs for the call option.

put ¢3(u) on the vertical axis and ¢3(u) on the horizontal axis. Conditions
(7.13)-(7.15) can be manipulated to obtain,

$5(w) > Cy(uu) — d3(u) - S(uu), (7.16)
$a(u) = —3(u) - Sy(um), (7.17)
and ¢y(u) > —dy(u) - Sy(ud), (7.18)

respectively. Now consider the objective function (7.12) and fix the hedge
costs at the u node at date n = 1. The iso cost lines are then determined by,

93(u) = Ci(u) = dy(u) - S (u),

where C) (u) is fixed. It is now important to realize that by the absence of
arbitrage,
Sy (uu) > Si(u) > Sy (ud),

must hold since there is no arbitrage if and only if S7(u) €]53 (uu), S5 (ud)|.
This can be seen by considering the two possibilities S}(u) > Si(uu) and
St(u) < Si(ud). If S{(u) > S3(uu), selling short the stock yields risk-less
(expected) profits. Similarly, if Si(u) < S3(ud), taking a long position in the
stock locks in a risk-less (expected) profit.

Figure 7.2 illustrates the hedge problem (7.12)-(7.15). The intersection
of,

¢5(u) = Co(uu) — ¢h(u) - S (uu),
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and,
() = —¢y(u) - S(ud),

determines the optimal hedge portfolio while (7.17) is not binding in opti-
mum. Therefore, the stock component can be derived from,

Co(uw) — §y(u) - S5 (uu) = —y(u) - S (ud),

& gh(u) = g2

- SYuw) — S3(ud)

This, in turn, gives rise to,

B Co(uu)
Sa(uu) — S3(ud)

Fa(u) = + 83 (ud).

Correspondingly, the minimal hedge costs C™® at the u node are,

min _ 52 (UU)
Cr(u) = ST (uw) — S} (ud)

[St(u) — S (ud)] .

The optimal portfolio generates a state-contingent payoff in states w € {uu, um, ud}
of,

~ S5 (uu)

Cs(uu) . Lm,

S3(uu) — S3(ud) %%((ud))
O g (]
S(uw) — S3ud) 20D {

Cs(uw)

~ S2 (um)—S2 (ud
Colww) - Ho=sttua

0

Here, it obviously holds that,

S5 (um) — S5 (ud)
Si(uu) — Si(ud)

<1,

so that the payoff in state uu exceeds the payoff in state um.

6This property of state-contingent payoffs resulting from super-replication in discrete
space settings is well-known. Compare example 4 in NATK (1995).
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The value of a call option at date n = 1, based on the super-replication
argument, is CP"(u) at the u node and C;(d) = 0 at the d node. The
replication sub-problem at date n = 0,

(3o (30)- (7).

has a unique solution which is given by,

o = ™ (u)
b SH(w) - Sid)’
and,
A= i)

~ SH(u) — Si(d)

From these expressions, the minimal initial costs to implement the super-
replicating strategy can be derived as,

) Cmin(u)
Cmin 1 . Sl o Sl D1 .
0 Sll(U) —Sll(d) [ 0 1( )}
To conclude the analysis of call option super-replication, we want to note
that the profit or loss of the hedgers in this case is given as,

min

T=a-S)—Ch

Put options

Now suppose that all hedgers hedge European put options of type P, and
let P, = a - P, denote the aggregate target payoff at n = 2. When hedging
puts, it is optimal for the hedgers to hold a zero portfolio at the u node at
n =1, ¢3(u) = 0 and ¢5(u) = 0. This becomes obvious by considering the
corresponding sub-problem,

0 ! 1 77;5:1 ! 0
Gy(u) - | 1 | +au)- | 15 =10
1 5 0

We found above that the sub-problem (7.11) at the d node at n = 1 has
no solution. As a result, the hedgers must super-replicate the put options
at this node. This is the only strategy that enables the hedgers to meet



7.3. SUPER-REPLICATION STRATEGIES 179

o5 (d)

optimal " N, r/.,.PQ(dd)
portfolio mem(d) 60(d) = By(dd) — h(d) - S(dd)
1

aEe B3(d)
-03(d) = —03(d) - Shdm)

S @3(d) = —¢i(d) - Sh(du)

Figure 7.3: Minimizing super-replication costs for the put option.

the obligations from the written options with certainty. The minimization
problem the hedgers have to solve is,

min  ¢5(d) + ¢y(d) - S} (d) (7.19)
$3(d),$3(d)
s.t. ¢3(d) + ¢i(d) - 51 > P (7.20)

A graphic analysis will again provide the solution to this problem quickly.
Condition (7.20) translates into the three constraints,

¢a(d )> —5(d) - S3(du) (7.21)
$(d) = —¢5(d) - S (dm), (7.22)
$3(d) > Po(dd) — ¢3(d) - S(dd). (7.23)

For fixed P;(d), the iso cost lines are determined by,

¢5(d) = Pi(d) — ¢3(d) - S} (d).
Similar arbitrage reasoning as in the call case reveals that there is no arbitrage
if and only if S}(d) €]Sa(du), Sa(dd)|.
Problem (7.19) and (7.20) is depicted in figure 7.3. Apparently, the in-
tersection of,

$5(d) = —¢y(d) - S3(du),
and,

$5(d) = Pa(dd) — ¢3(d) - S3(dd),
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determines the optimal hedge portfolio. Using this information, simple cal-
culations yield,

o Py(dd)
2D = G - sy 720
H(d) = S%(df) 2(_‘16221(dd).521(du), (7.25)

as the optimal portfolio. The corresponding minimal hedge costs P™"(d) at
date n =1 are,

min ﬁQ(d(D
Prd) = SI(du) — Si(dd) [

Sy (du) — Si(d)] .

Given the optimal super-replication portfolio (7.24) and (7.25), the state-
contingent payoff that the hedgers actually achieve in states w € {du, dm, dd}
is,

By assumption,
S3(du) — S3(dm) .
S3(du) — Si(dd) ’

so that the payoff in state dm amounts to less than the payoff in dd.
Solving the replication sub-problem at date n = 0,

(1)~ (86 ) = (o )

is now an easy exercise. The unique solution is,

PR ()
LT TS - Si@)
& = D gy,

Si(u) = 51(d)
yielding minimal initial costs of,

) Pmin d
Pénm . 1 ( )

~ S si@ S
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The profit or loss of the hedgers exclusively hedging puts is,
T=a-Sy— P

This concludes the characterization of the optimal super-replication strate-
gies for the call option Cy and the put option P,. In summary, super-
replication of call options of type Cy and put options P, creates an actual
state-contingent payoff per option of,

( B C, (IUU ) for w = uu
Co(uu) - % for w =um
0 for w = ud (7.26)
0 for w=du ’ '
0 for w = dm
\ 0 for w =dd
in the former case and,
( 0 for w = uu
0 for w = um
0 for w = ud
< - 89(d )—SL(dm) for o = du - 720
PQ(dd)_W for w = dm
Py(dd) for w = dd

in the latter case. These are the contingent claims we actually have to take
into account in the analysis to follow. Super-replication of both the call and
the put yields actual state-contingent payoffs that are unique and, even more
important for our purposes, independent of the stock prices prior to n = 2.

7.4 Equilibrium analysis

This section investigates the existence and determinacy of general equilibria
in the market model M. The exposition is very concise since there is
hardly a difference in comparison to the analysis in section 6.3. The main
reason for this is the existence of a representative non-hedger who sets prices
in equilibrium. Fortunately, the analysis of such an agent’s problem is very
similar in both complete and incomplete markets setting. In this section, we
also demonstrate that the market model M is incomplete by construction.
Every contingent claim is, however, super-replicable as we will argue.
We have as the counterpart to Theorem 49,
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Theorem 64 Assume that the hedgers hedge calls of type (7.1) and (7.2)
and puts of type (7.3) and (7.4) only. Then there exists a unique general
equiltbrium for the market model,

M = {(Q,p(Q),F,P), N = 2,8, 1"},
as defined in definition 48. The equilibrium stock prices satisfy,

gl _ ES [ (ny — Az) - my)
" ER[(n—Ag)]

(7.28)

for n € {0,1}, and S3 = n, for n = 2. EF is the conditional expectation
given the information set F,, v'(+) is the first derivative of the non-hedgers’
utility function v(-), 1y is the liquidating dividend of the stock at n = 2 and
Ay is the actual n = 2 state-contingent payoff that the hedgers achieve.

Proof. Due to Ay being unique and independent of the equilibrium stock
prices at n = 0 and n = 1, the proof of this Theorem closely parallels the
proof of Theorem 49. The only exception constitutes the fact that one has
to deal with six instead of four possible states at the terminal date. To see
this, recall that the proof of Theorem 49 was given before we knew that the
market model M™ is complete. Therefore, we had to carry out the proof
in a rather general fashion to take into account the possibility of incomplete
markets. In particular, we worked with a martingale basis because we could
not know whether Q is a singleton or not. The same methodology perfectly
applies here so that we can omit a detailed proof of Theorem 64. B

Results of DUFFIE and HUANG (1985) allow a short proof of the following
claim.

Lemma 65 The market model M™ = {(Q,p(Q),F,P),N = 2,S' 1%} is
incomplete.

Proof. As seen above, the present market model can be represented by an
event tree. In the terminology of DUFFIE and HUANG (1985), the market
model includes so-called long-lived securities. In our setting, this means that
such securities are traded at all dates n € {0,1,2}. Provided there are no
other securities available, DUFFIE and HUANG (1985) identify in sub-section
6.3 as a necessary condition for such a market model to be complete the
following: There have to be at least as many long-lived securities available as
the maximum number of branches leaving any node of the tree. The present
market model, however, contains only two long-lived securities whereas the
maximum number of branches leaving any node is three. Due to this mis-
match, the market model is incomplete. B
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Even though there is a unique general equilibrium, the market model
M is incomplete. This is in contrast to the market model M™ of the last
chapter where uniqueness implied completeness under the common knowl-
edge assumption. Yet the market structure is regular enough for all contin-
gent claims to be super-replicable.

Lemma 66 In the market model M™ = {(Q, p(Q),F,P),N = 2,S!, 1},
every contingent claim is super-replicable, or equivalently, A*= ]Ri.

Proof. It suffices to identify one admissible trading strategy that super-
replicates an arbitrary contingent claim A € R%. One such strategy is, for
instance, (¢, )nefo,1,2y € T where,

vn {0,1,2} : <¢?L7 ¢7lz) = (a,0),
a = max{Ax(w):w € Q}.

m

Exclusively investing in the bond, this strategy generates a state-independent
payoftf atn = 2. The payoff in all states w € () equals the maximum of
what the contingent claim pays off in any state w. This guarantees that the
payoff of the admissible trading strategy V5(¢) dominates the payoff of the
contingent claim Aj in all states, Vw € Q : Va(¢) > Ay. B

Although the market model M is incomplete in the sense of definition
34, the market sub-model between dates n = 0 and n = 1 is complete in the
sense that every payoff A; € R at n = 1can be created via trading in the
stock and the bond at n = 0.

Lemma 67 Under the assumptions of Theorem 64, the market sub-model
between dates n =0 and n =1 of M"™ = {(Q, p(Q),F,P), N = 2,S', 1} is
complete.

Proof. Given an arbitrary n = 1 payoff A; € R%, the lemma directly follows
from Theorem 64 since the linear system,

P+ ¢S =4

S { A st )
¢1 +¢; 511<d) = Al(d) 7

has a unique solution in ¢? and ¢] for all A, € R? and all (unique) equilibrium
stock prices Sj(u) and S7(d). B

As before, we declare the case a = 0 as the benchmark case and label
expressions related to this particular case with the superscript ”*”.

We are now prepared to proceed in the subsequent section with the com-
parative statics analysis of dynamic hedging.
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7.5 Comparative statics analysis

This section carries out the comparative statics analysis. On the one hand,
it considers settings where hedgers only hedge calls, and on the other hand,
settings where hedgers simultaneously hedge calls and puts. In combination
with the assumption that there are only two nodes at n = 1, this enables us
to directly compare the results with those obtained in section 6.5.

Assume that every hedger dynamically hedges either one European call
option given by (7.1) and (7.2) or one European put option given by (7.3) and
(7.4). To be consistent with the analysis in section 6.5, we again examine two
different cases. Assuming that a fraction p € [0, 1] of a hedges call options
of type Cy and a fraction 1 — p hedges put options of type Ps, we explore in
sub-sections 7.5.1 and 7.5.2 the two parameter settings

(a) p=1and
(b) p€0,1],

respectively.

7.5.1 Dynamic hedging of calls

In this (and the next) sub-section, we will see that we are not able to repro-
duce the comparative statics results of the last chapter. There we found that
dynamic hedging of calls unambiguously increased the stock price Si(u) at
the u node at n = 1. As an immediate consequence, the volatility o rose as
well.

Consider case (a) where hedgers only hedge calls of type Cs. In the
present context where hedgers must super-replicate the call option C,, the
stock price may either increase, decrease or remain unchanged in the presence
of hedgers. This is due to the fact that super-replication smooths the state-
contingent payoff the hedgers receive at the terminal date [see (7.26)]. We
have,

Proposition 68 In the market model M'™, the equilibrium stock price Si (u)
at the u node at date n =1 either increases, decreases or stays the same when
the market weight o of hedgers super-replicating calls of type Cs increases.

Proof. Sub-section 7.8.1 contains the proof. B
Proposition 68 implies that the net effect of dynamic hedging on the
volatility is ambiguous as well.
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Corollary 69 Volatility o may increase, decrease or remain unchanged when
the market weight o of hedgers super-replicating calls of type Cs increases.

Proof. Recalling the definition of volatility ¢ and noting that by (7.26) and
(7.28) Si(d) = Si*(d), one obtains from proposition 68,

0o 0 . 1
e 3—a(51( ) — S1(d))
= 2 (sl - 7))
0 0
= -S1(u)— 1-51*(d)
Ja 5’04_0
<0

as asserted. B

Moreover, the question of how volatility changes relative to the bench-
mark case in the presence of dynamic hedging can not be answered satisfac-
torily.

Corollary 70 When hedgers with non-zero market weight o super-replicate
calls of type Cy, volatility o may satisfy,

< _x
O';O',

where o* denotes the volatility in the benchmark case o = 0.

Proof. Clear. R

Market incompleteness requires hedgers to super-replicate the given call
option. The state-contingent payoff that results from super-replication is
characterized by strictly positive values in states uu and um while the call
option itself has a strictly positive payoff in the uu state only. This factor
results in a smoothing effect. Due to this effect, it is no longer clear what
impact dynamic hedging of call options has on the stock price S}(u) and on
volatility o. In order to arrive at unambiguous results, we would have to
specify almost all parameters in the market model M™™,

7.5.2 Dynamic hedging of calls and puts

Consider now case (b) where a fraction p € [0,1] of a hedges calls of type
Cy and where the remaining fraction 1 — p hedges put options of type Ps.
Under these assumptions, the aggregate state-contingent payoff that a single
hedger on average achieves by following super-replication schemes is,
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o O O

+(1-p)- 0
S3 (du)—S3 (dm)
Py(dd) - S (du)—S1(dd)
Py(dd)

p - Couu)

- S2 (um)—S2 (ud)
p- Coun) - S5t tua)

= 0 (7.29)

—S3(dm)
(L—p)- Pz(dd) m

(1= p) - P2(dd)

Denote by, _
Ay =a- Ay, (7.30)

the actual aggregate state-contingent payoff that the hedgers achieve.

In terms of intuition, we have little to add to the things already pointed
out in the previous sub-section. For reasons of completeness, however, we
list the results corresponding to those of the last sub-section below. An in-
teresting special case included in the present setting is p = 0 where hedgers
exclusively hedge puts. This case resembles the portfolio insurance economies
considered in BRENNAN and SCHWARTZ (1989), BASAK (1995) or GROSS-
MAN and ZHOU (1996). In contrast to sub-section 6.5.2, our findings in this
sub-section show that dynamic put hedging, or equivalently, portfolio insur-
ance may both increase volatility - as found in BRENNAN and SCHWARTZ
(1989) and GROSSMAN and ZHOU (1996) - and decrease volatility - as found
in BAsSAK (1995).

Proposition 71 In the market model M'™, regardless of the actual value
p € [0,1], equilibrium stock prices Si(u) and Si(d) at date n = 1 may both in-
dependently increase, decrease or remain unchanged when the market weight
o of hedgers super-replicating calls of type Cy and puts of type Py increases.
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Proof. Sub-section 7.8.2 contains the proof. B

Corollary 72 Volatility o may increase, decrease or remain unchanged when
the market weight o of hedgers super-replicating calls of type Cz and puts of
type Ps increases.

Proof. Clear. &

Corollary 73 Volatility o may satisfy,

o § o*,
when hedgers with non-zero market weight o super-replicate calls of type Co

and puts of type Py. o* denotes the volatility in the benchmark case oo = 0.

Proof. Clear. B
In the next section, numerical examples are provided which illustrate the
impact of dynamic hedging on financial market equilibria.

7.6 Numerical computations

This section provides a number of numerical computations for European call
and put options. It contains computations for the market models M™ and
M™_ For concreteness, consider a setting where,

(e =120
(g™ = 110)

n5* = 100

SN =100
(5™ = 90)

[ 7 =80

Of course, states um and dm only exist in the market model M. That
is why we put them in parentheses. Every state is equally likely to unfold.

In the market model M®™, this means that Vw € Q : P(w) = 1 while it

means in the market model M™ that Vw €  : P(w) = ¢. Consider now the
European call option given by,

Cy: Ry — R, S5+ max{S; — 110,01}, (7.31)
and the European put option given by,

Py: R — R, S; — max{90 — S, 0}. (7.32)
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Obviously, these options fit into the classes of options as described by
(6.33), (6.34), (6.35) and (6.36) on the one hand and (7.1), (7.2), (7.3) and
(7.4) on the other hand. To derive stock prices according to the pricing
equations (6.18) and (7.28), we additionally assume that the non-hedgers
exhibit CRRA, i.e., they have a utility function,

w7

1—7’

v:Ry = Rw—

where 7 is the constant degree R, of relative risk aversion.”

Tables 7.1 and 7.2 contain the data for the market model M“™. Volatility
figures in all tables are to be understood relative to the case where a = 0
and 7 = 1. From tables 7.1 and 7.2 we can conclude that volatility increases
with both the market weight o of hedgers and the degree of CRRA. This is
consistent with results reported in BRENNAN and SCHWARTZ (1989) as well

as BALDUZZzI, BERTOLA, and FORESI (1995).

Table 7.1: Volatility in the market model M“™ when the
call option (7.31) is hedged.

«

o 0.00 0.05 0.10 0.15 0.20 0.25

100.00 | 100.10 | 100.21 | 100.31 | 100.41 | 100.52
100.94 | 101.14 | 101.34 | 101.54 | 101.75 | 101.95
101.77 | 102.06 | 102.35 | 102.64 | 102.93 | 103.23
102.44 | 102.81 | 103.17 | 103.55 | 103.92 | 104.30

=W DN =

Table 7.2: Volatility in the market model M“™ when the
put option (7.32) is hedged.

«

N 0.00 0.05 0.10 0.15 0.20 0.25

100.00 | 100.15 | 100.31 | 100.46 | 100.62 | 100.77
100.94 | 101.23 | 101.53 | 101.83 | 102.13 | 102.42
101.77 | 102.18 | 102.60 | 103.01 | 103.43 | 103.84
102.44 | 102.95 | 103.46 | 103.96 | 104.46 | 104.96

=Wl o=

As seen above, options like (7.31) and (7.32) cannot be perfectly replicated
in the market model M. We nevertheless consider the hypothetical case

"Refer to section 3.3.
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that the hedgers realize a state-contingent payoff per capita equal to the
call or the put. This enables the separation of two distinct effects when
exchanging the market models M™ and M". The first effect is the one
induced by the change in the market structure itself (e.g., a change in the
probability measure P). The second effect is the one induced by the necessity
to super-replicate the options. Super-replication leads, as demonstrated, to a
smoother state-contingent payoff. Data for the hypothetical case is provided
in tables 7.3 and 7.4. A comparison with tables 7.1 and 7.2 reveals that the
observed effects in the market model M“™ are more pronounced than in the
market model M. Mathematically, this is mainly due to the fact that in
both cases the only state where the hedgers have a strictly positive demand
has more weight in M™ (where Vw € Q : P(w) = 1) than in M™™ (where
Yw e Q: Pw) = 3).

Table 7.3: Volatility in the market model M*™ if the call
option (7.31) could be perfectly hedged.

«

o 0.00 0.05 0.10 0.15 0.20 0.25

100.00 | 100.07 | 100.13 | 100.20 | 100.27 | 100.34
100.66 | 100.79 | 100.92 | 101.05 | 101.18 | 101.31
101.29 | 101.47 | 101.66 | 101.84 | 102.03 | 102.22
101.87 | 102.10 | 102.33 | 102.56 | 102.80 | 103.05

=~ Wi =

Table 7.4: Volatility in the market model M™™ if the put
option (7.32) could be perfectly hedged.

«

5 0.00 0.05 0.10 0.15 0.20 0.25

100.00 | 100.11 | 100.22 | 100.32 | 100.43 | 100.54
100.66 | 100.88 | 101.10 | 101.32 | 101.55 | 101.77
101.29 | 101.62 | 101.95 | 102.28 | 102.62 | 102.96
101.87 | 102.30 | 102.74 | 103.18 | 103.62 | 104.07

=W DN

If we now turn to the more realistic case where the options are super-
replicated (tables 7.5 and 7.6), we see that the necessity for super-replication
has a smoothing effect, too. The increase in volatility is not as sharp as
in M°™ or as in the hypothetical case in M®™. As a matter of fact, super-
replication leads to a state-contingent payoff that is smoother than the state-
contingent payoff of the options themselves. Consequently, super-replication
affects the volatility of the stock less than (fictitious) perfect replication.
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Table 7.5: Volatility in the market model M™ when
the call option (7.31) is super-replicated.

- « 0.00 0.05 0.10 0.15 0.20 0.25
1 100.00 | 100.07 | 100.14 | 100.21 | 100.28 | 100.35
2 100.66 | 100.80 | 100.94 | 101.07 | 101.21 | 101.35
3 101.29 | 101.49 | 101.70 | 101.90 | 102.11 | 102.31
4 101.87 | 102.13 | 102.39 | 102.66 | 102.93 | 103.20

Table 7.6: Volatility in the market model M™ when
the put option (7.32) is super-replicated.

. « 0.00 0.05 0.10 0.15 0.20 0.25
1 100.00 | 100.10 | 100.21 | 100.31 | 100.42 | 100.53
2 100.66 | 100.87 | 101.07 | 101.28 | 101.49 | 101.70
3 101.29 | 101.59 | 101.89 | 102.19 | 102.49 | 102.80
4 101.87 | 102.25 | 102.63 | 103.02 | 103.41 | 103.79

Figure 7.4 illustrates these statements for v = 1. The increase in volatility
is more pronounced in M°™ than in the hypothetical case in M. In turn,
the increase there is more pronounced than in the super-replication case in
M The figure suggests that the effect due to the change in the market
structure is much stronger than the one due to super-replication.

7.7 Summary

This chapter investigated dynamic hedging in a general equilibrium frame-
work where markets are incomplete by construction. We showed the exis-
tence and uniqueness of a general equilibrium under our assumptions. This
was possible because of the existence of a representative non-hedger and the
restriction to certain contingent claims.

In incomplete markets settings, hedgers cannot achieve a perfect hedge
in general. However, the market model laid out in this chapter offered the
possibility to super-replicate every contingent claim. This ensured that the
hedgers could at least super-replicate contingent claims in cases where a
perfect hedge was infeasible. In such a case one usually speaks of a complete
hedge as opposed to a perfect hedge.
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100.25
100.2-
100.15-
100.1;

100.05

100!

0 0.05 0.3 0.15 0.2

Figure 7.4: Volatility in M“™ [solid line] and in M“™ [hypothetical: dashed
line / super-replication: dotted line| for v = 1. x denotes a.

The comparative statics analysis focused on European call and put op-
tions. Our main motivation for this decision was that it allows us to compare
results obtained in chapter 6 with those obtained in this chapter. As it turned
out, it is no longer clear how dynamic hedging influences markets where it is
implemented, even in cases where it was completely clear, such as in chapter
6. While we found in chapter 6 that dynamic hedging of call and put options
unambiguously increases stock price volatility, we found here that it may also
decrease volatility. This was primarily due to the fact that super-replication
generates smoother state-contingent payoffs than the actual state-contingent
payoffs of the options. Numerical computations illustrated some of the ana-
lytical results.

The findings of this chapter support our arguments made in chapter 6.
Dynamic hedging of contingent claims with convex payoffs does not neces-
sarily lead to a rise in stock price volatility. Apart from this conclusion, this
chapter also contributes to the literature about dynamic hedging in imper-
fectly liquid markets in that it considers a market model that is incomplete a
priori. It would be interesting to explore dynamic hedging in such a context
when the hedgers follow an alternative hedging scheme or when the hedgers
hedge more general contingent claims.
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7.8 Mathematical proofs

7.8.1 Proof of proposition 68

First note that S7(d) = S;*(d) holds since there is no strictly positive hedge
demand in the lower part of the tree, i.e., for w € {du,dm, dd}. By definition,

o = Si(u)—Si(d)
= Si(u) = 8"(d),

so that we only have to prove that,

S (u)
oo

0.

VIA

Denote by A, the state-contingent payoff that the super-replication strategy
for the call option C produces [see (7.26)]. Recall that by definition Ay >
C,. Furthermore, denote Ay = o - A,.

St(u) is given by,

1 _ Ef’[v’(nz — Q- Z2) : 772]
) = TPl o Ap)]

where,

1
P(uu) + P(um) + P(ud)
- [Plun) - ' (5" — - Ay(un)) - n5"
P(um) -v'(ny™ — a - As(um)) - 3™
+P(ud) - ' (n3?) - m5?]

E? [U,<772 -« '22) : 772]

_|_

and,
BE[v/(n, — o+ )] 1
! 2 P(uu) + P(um) + P(ud)

- [Pluu) - v'(n3" — a - Ay(uu))
+P(um) - v'(ny™ — o - Ay(um))
+P(ud) - v’(ngd)] )

Define the single conditional probabilities by,

P(w)

Vw € {uu, um,ud} : P¢(w) =

P(uu) + P(um) + P(ud)’
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One obtains,

051 (u)
Oa
Pe(uu) - 0" (5" — o - Ag(uw)) - ™ - (—Az(un)) - EY [/ (ny — Ay)]
ET [0 (ny — As))?

g

(a)
n P(um) - v" (g™ — a - Ay(um)) - g™ - (= Ag(um)) - EF [V (n, — As)]
ET [v/(ny — Ap)]?

[\ J/
-~

(b)
Pe(uu) - v"(ng" — o As(uw)) - (—As(uw)) - EY [V (1, — As) - 1y
ET[v'(n, — Ap)]?

N J/

(©)
Pe(um) - v"(ny™ — - Ay(um)) - (= Az(um)) - EY[v'(n, — Ag) - 1]
EY[v/(1, — Ap)]?

N J/

(d)

N

We now demonstrate that (a) — (¢) > 0 (step 1) and that (b) — (c)
2) which leads us to the final conclusion that (a) + (b) — (¢) — (d

equivalently, as (u) = = 0 (step 3).
Step 1: (a) — (c) yields,

Pe(uu) - v" (03" — o - Ay(uw)) - 3" - (= Az(uw)) - EY[V/(1, — Ay)]
ET[v/ (1, — Ag))?
Pe(uu) - v (5" — o - Ag(un)) - (=Az(un)) - EY [V (1, — Ag) - ]
ET[v/ (1, — Az)]?
~ Po(uw) 0" (3 — o - Ay(uw)) - (—Az(uu))
ET[v/ (1, — Ag)]?
: [773“ : Ef) [UI(% - AQ)] - Ef [U,<772 — Ap) - 772]]
Pe(uu) - v" (" — o - Ay(uw)) - (— Az (uu))
ET[v'(ny — As)]?
[P(uw) - v (8" — o - Ap(uw)) - [y — ns]
+P¢(um) - v'(ny™ — o+ Ag(um)) - 5" — 13"
+PC(ud) - ' (n5?) - [n5" — 057 ]
> 0.
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Step 2: (b) — (d) yields,

Pe(um) -v"(ny™ — a - Ay(um)) - g™ - (= Ay(um)) - EY [0/ (y — Ay)]
Ef’ [UI(UQ - Az)P
Pe(um) - v"(ny™ — a - Ay(um)) - (=Ag(um)) - EY [V (15 — As) - 1]
E}) [V (ny — A2))?
_ Po(um) - "(n5™ — a - Ay(um)) - (—As(um))
E? [V (19 — Ag)]?
(5™ - EY [V (0, — A2)] — EY [V (15 — Ag) - 1]
Pe(um) - v"(ny™ — a - Ay(um)) - (—Ay(um))
Ef [V (ny — A2))?
[P (un) - o' (5" — o Ag(uw)) - [n5™ — 5]
+PC(um) - v'(ny™ — o - Ay(um)) - [n5™ — 05"
+P<(ud) - v'(n3?) - [n5™ — n37]]
=0

Step 3: Thus, we have,

as asserted. H

7.8.2 Proof of proposition 71

From the proof of proposition 68, we can directly conclude that here,

S (u)
Oa

<
=0,

as well. Since the present setting includes the case p = 0, it remains to show
that,

Let Ay = a - Ay where A, is as defined in (7.29). S}(d) is according to
Theorem 64 given as,

1 . Eﬁ”’(% — o 'Z2) : 772]
) = R, —a )
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where,

1

ET[V'(ny — o+ As) - ] P(du) + (dm) + P(dd>

- [P(du) - v'(ng") - m3"
+P(dm) - v (ng™ — o - Ay(dm)) - 772m
+P(dd) - ' (78 — o - Ay(dd)) - ]
and,
EP ’ A 1
1 V(g — a- Ag) - my] P(du) + (dm) + P(dd)
[P(du) v/ (")

(
P(dm) -v'(n§™ — o - Ay(dm))
+P(dd) - V' (03" — o - Ay(dd))] .

_l_

To simplify notation, define the single conditional probabilities by,

P(w)
P(du) + P(dm) + P(dd)

Vw € {du,dm,dd} : P¢(w) =

One obtains,

951 (d)
Oa
Pe(dm) - v"(n§" — - Ay(dm)) - g™ - (= Az(dm)) - ET [v'(n, — As)]
ET [V (1, — Ag))?
(3
L Peldd) V' (n3! — o - Ay(dd)) - 15" - (—As(dd)) - BT [/ (19 — Ap)]
. ET[v/ ( — As)]? )
(b)
P<(dm) - v"(n§" — a - Ay(dm)) - (=Az(dm)) - ET[v/(ny — As) - 1y

J/

N J/

Pe(dd) - v"(n§" — a - Ay(dd)) - (—Aa(dd)) - EY[v/'(ny — Az) - 1y
ET [v'(ny — Ag)]? '

N J

(d)

The strategy to prove the remaining part of the proposition is very similar
to the strategy pursued in the proof of proposition 68. We demonstrate in



196 CHAPTER 7. DYNAMIC HEDGING IN INCOMPLETE MARKETS

step 1 that (b) — (d) < 0 and in step 2 that (a) — (¢) ; 0. In the end, this

yields in step 3 the assertion that (a) + (b) — (¢) — (d) § 0, or equivalently,

981(d) <
804 0

Step 1: (b) — (d) yields,

Pe(dd) - v"(n5" — a - Ay(dd)) - n3" - (= Az(dd)) - BT [v/(ny — As)]
ET [v/ (1, — A;)]?
_Pe(dd) - v" (05" — a - Ay(dd)) - (—As(dd)) - ET[v' (1, — Az) - ]
ET[v'(ny — A2))?
_ Pe(dd) v (o — - Ta(dd)) - (~Tp(dd))
(

ET[v/(n, — A2)]?
: [ng : Ef’ W<772 —Ay)] — Ef’ [U/ Ny — Ag) - 772]}
_ Pe(dd) v (o — - Ap(dd)) - (~Tx(dd))
ET[v'(n, — Az)P

- [PC(du) - v'(ng") - [m3% — n3"]
+P(dm) /(1" — - Ap(dm)) - [1" = 5"
+P(dd) - v' (N4 — o - Ay(dd)) - [ H
0
Step 2: (a) — (c) yields,
Pe(dm) - v" (ndm — o - Ag(dm)) - ndm - (= Aa(dm)) - EY [/ (0, — A)]
ET[v'(n; A2)]

Pe(dm) - v" (5" — o - Ap(dm)) - (—Az(dm)) - EY [v'(n, — As) - 17y]
ET[v'(ny — A2))?

Pe(dm) (" — o Ty(dm) - (~Ty(dm)
EF[v'(1, Az)P

: [Ugm : Ef[vl(% A2)] [ ( Ny — Ag) - 2H

Pe(dm) (" — o Ty(dm) - (~Ty(dm)

ET [v/(n, A2)]

[P(du) V' (") - [n m—%}

+P(dm) - v'(n§™ — o+ As(dm)) - [n§™ — n3"]

+Pe(dd) - v'(ny! — o~ As(dd)) - [ny" — 772 ]

0
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Step 3: Hence, we have,
051 (d)
Oa

VIA

0,

as desired. W
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Concluding Remarks

This thesis was comprised of three parts. The introductory part of the thesis,
part I, was intended to introduce the reader to dynamic hedging and several
aspects related to it. In chapter 1, we discussed the main principles in which
dynamic hedging programs are generally based on. We saw that replication
and arbitrage are powerful concepts in deriving fair prices for contingent
claims like options, and in deriving appropriate dynamic hedging strategies.
We delineated the assumptions under which replication and arbitrage work
perfectly. Typically, dynamic hedging strategies produce positive feedback.
Such a trading behavior is incompatible with the standard rationality hy-
pothesis that individual behavior is representable as the maximization of a
suitably chosen utility function. Therefore, we introduced in chapter 1 the
noise trader approach which is capable of incorporating agents who act ’ir-
rational’. We argued that this approach permits the explanation of several
puzzling observations that are incompatible with the standard paradigm of
efficient markets. Chapter 1 then proceeded by examining the relationship
between dynamic hedging and market liquidity. A simple example demon-
strated that the standard replication-arbitrage approach breaks down in im-
perfectly liquid markets. Empirical results and two case studies supported
our case for the importance of market liquidity for dynamic hedging.

Presently, the study of dynamic hedging in imperfectly liquid markets rep-
resents an active field of research in financial economics. Chapter 2 surveyed
articles that fall in this strand of literature. In the spirit of the noise trader
approach, such studies generally consider equilibrium models where rational
agents interact with irrational agents like hedgers. The studies mainly differ
in one dimension, namely, whether information is complete or incomplete.
Regardless of the actual information structure almost all studies produce
similar results. For example, all but one author observe that dynamic hedg-
ing increases volatility. Since market volatility is generally considered to be a
measure for the stability of financial markets, this is a really striking result.
We concluded chapter 2, and thereby part I of the thesis, by outlining some
possible applications of the models proposed in the surveyed articles.

199
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Part IT of the thesis laid the theoretical foundations for our formal analy-
sis. Chapter 3 presented a brief review of several aspects related to un-
certainty in financial economics. It introduced a formal model capable of
capturing the basic notions of uncertainty in a financial market and sketched
an approach to decision making under uncertainty. Chapter 4 built on the
analysis in chapter 3. Chapter 4’s focus was on the martingale approach to
finance. It presented a general model framework and derived central results
with respect to the absence of arbitrage, the existence of an equivalent mar-
tingale measure and the pricing of contingent claims. Examples illustrated
the application of some of these results.

In part IIT of the thesis, we applied the tools and methods of part II to
three different economic settings. Chapter 5 set the stage in that it analyzed
dynamic hedging in a ’perfect’ world. The main result of this chapter was that
dynamic hedging of contingent claims with convex payoffs produces positive
feedback. The striking point about this result is that almost all contingent
claims engineered in the real marketplace have convex payoffs. The positive
feedback result was illustrated by examples utilizing the BLACK / SCHOLES
pricing formula.

In chapter 6, we considered a general equilibrium model to investigate
the impact of dynamic hedging on financial markets. Following the noise
trader approach, the model economy was populated by hedgers following
dynamic hedge programs and non-hedgers maximizing their expected util-
ity. It turned out that a unique general equilibrium existed and that the
market model was complete in equilibrium under a common knowledge as-
sumption. For certain call and put options, we showed in chapter 6 that
the implementation of their corresponding hedging strategies inevitably in-
creases volatility. However, this result heavily hinges on the particular class
of contingent claim considered. Examples demonstrated that positive feed-
back trading by hedgers may both increase and decrease the volatility of the
underlying stock. On a similar note, another example revealed that negative
feedback trading may increase volatility. These findings are in sharp contrast
to findings reported in similar studies. We provided an explanation for our
observations that was mainly based on arguments concerning the market lig-
uidity. In these particular findings we see one of our main contributions to
the literature.

Chapter 7 generalized the market model of chapter 6 to incomplete mar-
kets. The study of dynamic hedging in a general equilibrium framework
with inherent market incompleteness is new. It therefore represents one of
our main contributions as well. We connected the field of incomplete mar-
kets research with the field of research concerned with general equilibrium
effects of dynamic hedging. Generally speaking, perfect hedges are no longer



CONCLUDING REMARKS 201

feasible in incomplete markets. In light of this, we required the hedgers to
super-replicate so that they at least achieve a complete hedge. Contrary
to a complete markets setting, super-replication in incomplete markets may
generate price process-dependent optimal strategies. Yet we showed that the
strategies for super-replicating those call and put options, which we were
mainly interested in, are price-independent. Assuming that hedgers only
hedge these call and put options, a unique general equilibrium existed in
the market model of chapter 7. Our analysis revealed that super-replication
smooths the payoff that the hedgers actually achieve. Due to this smoothing
effect, it was no longer clear what impact dynamic hedging has. Whereas we
found that dynamic hedging of calls and puts may produce clear cut price
and volatility effects in the complete markets framework of chapter 6, this
result broke down in the incomplete markets framework of chapter 7. By
using numerical simulations, we compared the quantitative effects dynamic
hedging has in the frameworks of chapters 6 and 7, respectively.

The main conclusion that we can draw from our results is that dynamic
hedging - typically posing positive feedback on financial markets - does not
necessarily destabilize these markets. Taking volatility as a measure for mar-
ket stability, we saw that positive feedback hedging may both stabilize or
destabilize markets. These results are in sharp contrast to those reported
in a number of similar studies. In other words, the results of these studies
seem to be artifacts of the respective parameter specifications. Even though
we did not obtain clear cut results regarding the direction in which dynamic
hedging influences financial markets, we saw in the examples that market lig-
uidity is an important determinant of the actual impact of dynamic hedging
on financial markets.

If we would have to pick the crucial assumption that primarily drove our
results, we would pick the assumption of complete and symmetric information
among agents. From an economic point of view, it seems risky to presume, for
instance, that every agent is aware of the extent to which dynamic hedging
takes place and at which terms it does so. Certainly, it would be interesting to
analyze the implications of relaxing this assumption in our model framework.
This could be done by modelling the parameter o - the market weight of
hedgers - as a random variable or even as an uncertain quantity.

Another critical assumption we made once in a while concerned the pay-
off structure of the contingent claims under consideration. Particularly in
chapter 7, the results hinge heavily on the circumstance that the strategy of
the hedgers is price-independent. To examine more general classes would be
an interesting direction for future research as well.
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The assumption made in chapters 6 and 7 that only three dates are rele-
vant represents a drawback in technical terms rather than in economic terms.
For example, our notion of volatility presented in chapters 6 and 7 clearly
depends on the particular model structure. Yet the extension of our general
equilibrium models to more than three dates is straightforward and would
only raise the question of how volatility should be measured in such an en-
vironment. We are quite confident that our results carry over to such a gen-
eralized setting and do not see a problem in finding an appropriate measure
for the volatility.

Of course, there are still a lot of other aspects related to dynamic hedging
that deserve more attention in future research. Our hope is, however, that
this thesis helped to clarify - in economic terms - some of the more important
aspects of dynamic hedging.

We started our exposition with a discussion of the BLACK / SCHOLES /
MERTON approach to option pricing and hedging. We also reported that two
of these outstanding researchers, ROBERT MERTON and MYRON SCHOLES,
had to witness how their investment company LTCM - mainly investing ac-
cording to their own approach - nearly collapsed. Therefore, it seems quite
natural to conclude this thesis by quoting one of the people who invented the
approach that revolutionized the financial services industry and that consid-
erably influenced the thinking of researchers in finance. ROBERT MERTON’S
statement below, made on the occasion of the NOBEL prize ceremony and
therewith before the disastrous events in the second half of 1998, expresses
his concerns about the applicability of financial models to the real world.
The models and results presented in this thesis should be judged in the light
of his concise warning.

" The mathematics of financial models can be applied precisely,
but the models are not at all precise in their application to the
complex real world. Their accuracy as a useful approximation to
that world varies significantly across time and place. The models
should be applied in practice only tentatively, with careful assess-
ment of their limitations in each application.” MERTON (1998,
343).
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